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Abstract

The strategy of clustering is introduced to enable coordination in decentralized multi-UAV systems. Each
cluster is an organized unit comprised of several cluster-members and one cluster-head. We propose the con-
cept of multi-level clustering, in which cluster-heads form successively higher-level clusters, resulting in a tree-
shaped hierarchy. Multi-level clustering provides a mechanism for aggregating local states and disseminating
the information needed for system coordination. Related work shows that aggregate information is benefi-
cial for efficient UAV path planning using reinforcement learning. We propose rules for scalable multi-level
cluster-formation, taking into consideration the computational and communication loads associated with clus-
ter maintenance and information aggregation and dissemination. The viability of the proposed concept is
demonstrated in preliminary simulations. The scenarios considered examine the effects of agent motion, take-
off, and landing on multi-level clustering. The simulation results show that multi-level clustering is robust to
the dynamics of multi-UAV environments.

I. Introduction

Autonomous multi-UAV systems are increasingly relevant in many emerging applications that lack pre-existing
wireless infrastructure. Usually, these applications involve spatially-distributed, time-varying ”points-of-interest” that
must visited under certain time or energy constraints, with the objective of sending UAVs to as many points as possible
subject to the given constraints. Examples include wildfire surveillance, in which UAVs must locate burning trees in
a forest fire, or post-disaster provisioning of wireless connectivity in which UAVs act as temporary access points to
first responders in the aftermath of an event. Points-of-interest correspond to burning trees in the first scenario and first
responders in the second.

Ideally, any proposed system should scale with the number of UAVs and distribution of interest-points. In
general, communication and planning problems in multi-agent systems are not scaleable. Without pre-existing wireless
infrastructure, the UAVs themselves must discover multi-hop routes over which to exchange messages, a computationally
expensive task since the network topology at any instant, depends on the changing relative positions and velocities
of the UAVs. Moreover, single-agent planning problems are challenging in their own right, making the multi-agent
problem even more daunting.

The class of applications described above, modeled by spatially-distributed points-of-interest, has a particular
structure that simplifies the problem complexity. Consider the example of wildfire surveillance. For the UAVs to
effectively track the spread of fire propelled either by wind or the tree density, it suffices intuitively for each UAV to
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know the precise positions of the burning trees in its vicinity but only the aggregated fire intensity in relatively remote
regions. UAVs can thus independently survey/monitor the events in their regions, provided the situation in other regions
remains under control; spreading fires should first attract the UAVs nearby, and when large enough, the UAVs that are
further away. For the system to respond in a coordinated way to changes in the distribution of interest-points, each
agent requires the profile of aggregated states calibrated to itself, instead of the raw local states of all other agents.

The strategy of only disseminating the information needed for multi-agent coordination has previously appeared
in the robotics literature without the extra assumption of spatially-distributed interest-points. Instead, the basic,
unvarnished Markov Decision Process (MDP) is used, under the assumption that all intra-UAV communication is
direct (point-to-point) and limited. The other extreme is the ad-hoc networking literature, which largely ignores
application-specific features of the transmitted data and focuses instead on connecting any pairs of agents through
multi-hop routes.

This paper is part of a body of work that aims to bridge both extremes by narrowing the class of applications to those
that can be modeled by spatially-distributed points-of-interest while also allowing multi-hop routing for communication.
The key idea is the notion of a ”cluster” that simultaneously reduces the planning and communication problems’
complexity.

A cluster of agents, UAVs in this case, consists of cluster-members and a duly elected cluster-head connected through
a ”star” topology, where the cluster-head schedules all communication between its cluster members (intra-cluster
communication). The notion of a cluster also appears in the VANET (Vehicular Ad-Hoc Networking) literature as a
tool for preventing vehicular collisions by designating as cluster-head, the vehicle with the most stable communication
channels between itself and the cluster members. When there are more agents than can reasonably fit into one cluster,
agents divide themselves into multiple independent clusters with their neighbors.

This paper envisions a different role for agent clusters, namely as the primary mechanism for information aggregation
and dissemination in decentralized systems. The concept of multi-level clustering is proposed to connect all agents
under a single hierarchical tree and prevent independent, disconnected clusters. In its most rudimentary form, multi-level
clustering unfolds in the following way: first agents organize themselves into clusters and elect cluster-heads; then
the cluster-heads organize themselves into ”macro-clusters” (or level-2 clusters) and elect level-2 cluster-heads; the
process repeats for higher levels until all the agents are finally connected in a tree of arbitrary depth. Cluster-heads
orchestrate all intra-cluster communication at each level and serve as gateways, regulating the information passing in
and out of their clusters (inter-cluster communication). It is essential to recognize that clustering merely responds to the
agent trajectories without directly affecting them. As far as the authors are aware, multi-level clustering has never been
proposed before; clustering algorithms in the literature are all single-level.

Multi-level clustering is difficult because UAVs are highly mobile; UAVs may drift out of range, effectively ending
their participation in a functioning unit. Changes that occur at any level of the communication tree can also affect
the proper functioning of clusters at other levels. To preserve cluster integrity, much of the literature is invested in
finding the optimal (most stable) clustering before run-time. This paper proposes a fundamentally different philosophy,
based on periodic verification during run-time. The idea is to accept a ”quick-and-dirty” initial clustering, one that is
likely to be sub-optimal, even crudely so, intending to successively improve this clustering over periodically scheduled
maintenance/verification phases. Under the right conditions, the initial clustering may converge to the optimal clustering
in steady-state.

To be viable, multi-level clustering includes mechanisms that allow clusters to merge or split, supporting the
organized transfer of agents from one cluster to the next, and that keep agents connected to the tree even when they leave
their clusters. These mechanisms allow the system to adapt and adjust, to maintain a stable superstructure that connects
all UAVs despite trajectory-induced changes to the exposed topology. This paper provides a high-level introduction of
the algorithm and preliminary simulation results to whet the appetite for a more in-depth simulation and analysis to
follow.

The rest of the paper is organized as follows. Section II provides some background along with an overview of
the relevant literature, Section III introduces some of the basic concepts of multi-level clustering, Section IV includes
preliminary simulation results that demonstrate the viability of multi-level clustering. Section V concludes with a
summary of future work.
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II. Background and Related Literature

The objective of multi-level clustering is to reduce the complexity of multi-agent motion planning, by disseminating
minimally required local state information for global coordination. System states evolve according to some Markov
Decision Process (MDP).1 Other components of an MDP include actions, “state transition probabilities”, and a reward
function which assigns a real-valued “reward” to each state-action pair. State-transition probabilities correspond to
the system dynamics, and describe the probability of moving to some state in the next time-instant given the state and
selected action in the present time-instant. The system is Markovian in the sense that the future only depends on the
past through the present.

A “policy” is a rule for mapping specific states to assigned actions. For example, UAVs could have a policy of
visiting burning trees within some fixed radius of their current position, provided that the intensity of the fires in
remote regions remains beneath some threshold. Every policy will have an expected discounted reward accrued over its
operating lifetime. The optimal policy, by definition, achieves the maximum discounted reward.

Reinforcement learning2 is a way of “solving” the optimal policy without knowledge of the state-transition
probabilities. Some relevant applications of reinforcement learning in multi-UAV systems with coordination constraints,
include wildfire surveillance3, 4 and data harvesting.5 In many cases, finding the optimal policy is computationally
expensive,6 having exponential complexity in the state-space dimension.7

In certain applications, state-spaces have “locally-interactive” structure; the optimal action of any particular agent
depends on a combination of the specific events in its immediate vicinity and the aggregate events occurring elsewhere.
This structure can be exploited,8 to find approximately optimal policies with faster convergence times.9 One such
approach that appears in the literature is called state decomposition.8 It is shown that compressed global information
combined with detailed local information can be used effectively for single UAV path planning,10 as well as multi-UAV
path planning.5 In the multi-UAV problem, agents can infer the global view by communicating with the other agents
through a multi-level hierarchy.

State decomposition also simplifies the communication problem.11 If the state-space is locally-interactive, then
each agent need only know the aggregate states of remote agents instead of the precise local states of every individual
agent.12 Exploiting this structure reduces the communication burden on the system as a whole.13 Strategies based on
this approach appear in the literature for general MDPs,14, 15 contingent on the assumption that any locally-interactive
structure is known a priori.16 In practice, finding this structure is a non-trivial exercise that must be repeated for
each application, since the state-space itself is application-specific. Augmenting the traditional MDP with spatially-
distributed interest-points, has the advantage of making this structure explicit, which simplifies the planning problem.
The multi-level clustering communication protocol in this paper is proposed with these augmented state spaces in mind.

An alternative approach (not taken here) is to separate the communication problem from the planning problem;
Ad-Hoc Networks (MANETs) have been studied extensively in the literature,17 outside the context of motion-planning.
There are several ways of classifying ad-hoc networking protocols in the literature. Protocols are pro-active,18 when
routing tables are consistently maintained, and reactive when routing tables are updated as needed.19 Link-state
routing,20 allows each agent to see the entire communication graph, whereas distance-vector routing21 only reveals
the next hops to each agent. These protocols, which prioritize discovery of shortest routes, are not designed to enable
coordination in multi-agent systems or disseminate state information.

The notion of clustering,22 has also been studied in vehicular ad-hoc networks (VANETs).23 Clusters consist of
agents that share relatively stable communication channels for low-bandwidth, delay-sensitive VANET applications
like collision avoidance24 and vehicle platooning.25 Metrics for creating stable clusters usually depend on the agents’
relative positions and velocities,26 and do not incorporate a ”system objective” such as tracking the spread of wildfire.
The literature appears confined to single-level clustering, where each cluster is independent and effectively disconnected
from the others.
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III. Concept

The following section describes some fundamental clustering rules and concepts that ensure disconnected groups
of decentralized, asynchronous agents can form a stable functioning network, despite the differences in their take-
off/landing times and the dynamics of their motion. The proposed ”hierarchical multi-level clustering” approach, takes
agents from this initial uncoordinated state, to a steady-state in which full system-wide coordination is achievable.

A. Decentralized to Hierarchical

At the moment of spawning, which occurs at take-off, each agent finds itself alone; it knows of no other neighbors and
belongs to no cluster. Hence, the immediate tasks are to both discover whether any neighboring agents or agent clusters
exist in the vicinity and to alert these agents of its presence. Newly spawned agents accomplish both tasks by first
broadcasting ”hello” messages that include their positions while listening for other agents’ ”hello” messages, sharing
this information. From the ”hello” messages, agents create lists of their neighboring agents and clusters.

The next task is to either initiate cluster formation with neighboring unclustered agents or, if available, join a
neighboring cluster that is not at capacity. After successfully joining or creating a cluster, coordination of communication
is handled by a cluster-head. The cluster-head of this level-1 cluster is chosen according to its close proximity to the
centroid of the agents’ positions in the cluster. Cluster-heads repeat the decentralized process, searching for other same
level cluster-heads to create a cluster of one level higher, or joining existing clusters that are exactly one level higher.
Repeated, this yields the desired hierarchy, in which cluster-heads can schedule internal communication, leading to
more efficient synchronous communication schemes.

B. Clustering Rules

We define rules for the proposed multi-level clustering to improve the applicability of the clustering in real-world
environments. Their rationale and resulting consequences are elaborated in the following.

1. Every agent can only be a cluster-head of one cluster.

This rule’s rationale is that a cluster-head performs tasks for maintenance and cluster verification to maintain and
improve the clustering and tasks for aggregating and disseminating mission-critical information to its members and
superiors. These tasks require computational and communication capacities. If agents are allowed to be cluster-heads
of multiple levels of clusters, their onboard hardware needs to be provisioned for the worst-case computational and
communication load. This worst-case does not have an upper bound if the number of agents and the operating area
are unbounded, because an agent could be a cluster-head of an unbounded number of clusters. Furthermore, if the
number of agents and operating area are bounded, the worst-case load can still be significantly higher than the average
case load. In both cases agents are required to be drastically over-provisioned in terms of computational hardware and
communication resources. To avoid this, we do not allow agents to be cluster-heads of multiple clusters, balancing the
loads among all agents.

2. Every cluster-head has to be a member of a level-1 cluster.

This rule’s rationale is that every agent, cluster-head or idle, still conducts its regular mission tasks. Thus cluster-heads
have to be members of level-1 clusters to receive and report the same level of aggregate information. This allows for
homogeneous multi-agent systems, simplifying many planning and control problems.

3. A cluster-head of any level has to be a level-1 member of its own sub-tree.

The tree in this rule refers to all agents that are connected through multi-level clustering. The sub-tree of one cluster-head
contains all of its descendants. This rule is an extension to Rule 2, adding that the cluster-head has to be a leaf in
its sub-tree. If agents are non-moving, this rule is enforced by through Rule 1 and Rule 2, as the agents can only be
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selected as cluster-heads if they are idle members of the tree. However, this rule is not automatically enforced through
the previous rules if agents are moving as they can change level-1 cluster membership, potentially leaving the sub-tree.
Without Rule 3, action directives decided by a cluster-head for its cluster may conflict with action directives it receives
as level-1 member of an external tree. This conflict creates ambiguity in action selection when applying the concept of
joint actions for multi-agent planning. As joint actions will be an essential element of hierarchical planning, which is
the ultimate goal of this research direction, Rule 3 eliminates the potential hurdle.

C. Clustering Example and Tree View

Figure 1 illustrates multi-level clustering in two groups of agents. It shows the formation of one higher-level cluster in
both groups, starting from an unclustered state in the first group and a level-1 clustered state in the second.

Consider agents 1 to 4 in the unclustered group in Figure 1a and assume, due to their mutual proximity, that each
agent has received ”hello” messages from the others. The agents are thus ready to initiate cluster formation. The
protocol guarantees that one of the four agents will successfully inform the other three of their impending membership
in a new cluster and, given its knowledge of their positions, elevate the agent closest to the centroid as cluster-head. In
Figure 1a, agent 3, being the closest agent to the centroid, is elevated to the head of the cluster.

This method, which creates single-level clusters, can be further extended to create multi-level clusters, as shown in
Figure 1 for agents 5 to 16. Assume the level-1 cluster heads 7, 11, and 15, marked in green, have exchanged ”hello”
messages due to their level-1 proximity, and are ready to form a level-2 cluster. As before, the protocol guarantees that
one of the three will inform the others of their impending membership in a new level-2 cluster. However, as stipulated
in Rule 1, the initiating agent does not designate any of these agents as the level-2 cluster head; these agents already
have clusters to manage and are not allowed to manage more. Instead, the initiating agent queries their lists of idle
level-1 cluster members (the agents that are not heads of any clusters) and elevates the idle agent closest to the centroid
of the level-1 cluster-heads, to the head of the level-2 cluster, which in Figure 1b, turns out to be agent 13.

Multi-level clustering results in a tree-structured hierarchy. Figure 2 shows resulting trees from both groups of
agents in Figure 1b. Observe that every node in the tree is also a leaf within the same tree, as stipulated in Rule 2.
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(a) Two groups of agents being unclustered (left) and level-1 clustered (right).
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(b) Two groups of agents being level-1 clustered (left) and level-2 clustered (right).

Figure 1: Multi-level clustering examples.
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Figure 2: Tree view of the agents in Figure 1b.

IV. Clustering Scenario Examples

The algorithm used for the autonomous hierarchical multi-level clustering is a prototype that will be improved and
elaborated in detail in follow-up work. The basic principle of the algorithm is that, when unclustered, agents alternate
join and create phases. In the join phase, agents try to join existing clusters which are close enough and not at capacity.
If the agent does not find a cluster to join, it switches to the create phase in which it tries to find other unclustered
agents in their create phase to form a new cluster. When a new cluster is formed, the agent closest to the centroid is
elected as cluster-head, receiving a cluster-token. This cluster-token contains the necessary cluster information such as
the member list and higher cluster heads. The idea of the cluster-token is that it can be passed to another agent if a
better cluster head is chosen or the current token holder de-spawns.

Once the cluster-head is elected, receiving the cluster-token, this agent starts another join-create cycle to join or
create higher-level clusters. Furthermore, the cluster management, such as choosing a new cluster-head, evicting agents
that surpass the distance threshold to the cluster-head, rebalancing sub-clusters, and more, can be conducted by the
cluster-head directly. This way, the initially fully decentralized clustering converts to an autonomous hierarchy with
substructure management.

This section shows four scenario examples of clustering under different motion and spawning patterns. The first
example shows stationary agents that are not spawning. The second adds spawning and de-spawning to the stationary
agents, while the third adds spiral motion to the non-spawning agents. The fourth example combines the spiral motion
with the spawning and de-spawning behavior, being closest to a real-world scenario.

A. Non-spawning stationary

The scenes in Figure 3 show the clustering of the agents at different times during the simulation. The blue points are idle
agents, i.e., agents that are not cluster-heads. Conversely, green points are level-1 cluster-heads, red points level-2, and
orange points level-3 cluster-heads. Connecting lines indicate cluster membership with blue lines connecting idle blue
agents with their green cluster-head, green lines connecting green level-1 cluster-heads with red level-2 cluster-heads,
and analogously for higher levels. The legends on top show the different distance thresholds for the cluster levels.

The distance thresholds double for each increment in cluster level in all the scenarios, starting at 15m for level-1.
The agents perform their join-create tasks at 10Hz and switch from the join phase to the create phase after 1 s and
vice versa after 2 s. This guarantees that create phases of unclustered agents or cluster-heads without higher cluster
membership overlap. The cluster capacity is set to 6.

The first scenario is showing 100 agents that are spawned at time t = 0 s, starting their autonomous clustering
algorithms simultaneously. Their positions are randomly sampled uniformly in a 40m×40m area. At t = 250 ms, the
agents are still unclustered since they are trying to join existing level-1 clusters. As all of them spawned simultaneously,
no clusters exist. At time t = 1250 ms all agents switched to their create phase and created the first level of clusters.
The cluster-heads are indicated in green. In contrast to higher-level clusters, level-1 cluster-heads are also members
of their headed clusters, explaining that at max five blue lines are visible per cluster. At this time, the green agents
finalized forming their clusters and try joining potentially existing level-2 clusters.

At time t = 2250 ms level-2 clusters formed, promoting idle level-1 members to level-2 cluster-heads. The level-2
cluster-heads are still members in their previous level-1 clusters showing a two-way blue and green line to one of the
level-1 cluster heads for each level-2 cluster-head (red). At t = 3250 ms, one level-3 cluster is formed, again promoting
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(a) Unclustered at t = 250 ms (b) Level-1 clustered at t = 1250 ms

(c) Level-2 clustered at t = 2250 ms (d) Level-3, fully clustered at t = 3250 ms

Figure 3: Stationary non-spawning clustering.

an idle level-1 member to the cluster-head. From now on, the level-3 cluster-head is trying to join or create a level-4
cluster but will not find any other level-3 cluster-heads to create a new level-4 cluster.

This scenario shows how the proposed clustering is intended to work in general. The simultaneous spawning of the
agents made it very simple to form a tree that contains every agent. The following examples complicate the scenario to
challenge the algorithm’s reaction to dynamic environments.

B. Spawning stationary

In this scenario, the reaction to the agents’ spawning and de-spawning is shown. For this the spawning area is increased
to 100m×100m. Agents are spawned, i.e., taking off, periodically with intervals between spawns uniformly sampled
from [1000,2000] ms. Each agent receives a lifetime sampled from [75,100] s after which the agent de-spawns, i.e.,
lands. Due to the spawning and de-spawning intervals, it is expected to have an average number of active agents around
58.

The simulation samples in Figure 4 are similar to the previous ones, showing a greater area. Since no agent is
present at the start of the simulation at t = 34 s, only some agents spawned and formed small clusters up to level-2. At
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(a) t = 34 s (b) t = 64 s

(c) t = 275 s (d) t = 276 s

Figure 4: Stationary spawning clustering.

t = 64 s, all agents that spawned are still present, as the lowest lifetime value is 75 s. More agents spawned, allowing
larger clusters, including a level-3 cluster, connecting a majority of the agents.

Later during the simulation, a stable number of active agents is established, with agents spawning and de-spawning
at similar intervals. At time t = 275 s nearly all agents are clustered together. Note that none of the agents at that
time point were present in the previous times, yielding very different clusters. To show how the algorithm reacts to
cluster-heads de-spawning, the next time sample at t = 276 s shows the clustering after the level-3 cluster-head (orange)
from the previous time sample de-spawned. When de-spawning, a cluster-head chooses a new cluster-head from the
idle level-1 cluster members. The new selection is based on proximity to the centroid of the cluster members. It can be
seen that no other cluster is affected by the cluster-head transition.

This scenario intends to show how well the algorithm handles a varying number of agents, which is crucial when
dealing with dynamic real-world scenarios since UAVs have limited battery capacity. We show that for our proposed
clustering, it is not necessary to assume that all participating agents are active simultaneously.
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(a) t = 4 s (b) t = 94 s

(c) t = 98 s (d) t = 200 s

Figure 5: Non-spawning spiral movement clustering.

C. Non-spawning spiraling

This scenario introduces motion to the agents, evaluating the handling of agents leaving or entering cluster radii. The
motion chosen is a counter-clockwise spiraling motion around the agent’s spawning location. Consequently, some
agents move in the same direction and others in different directions depending on their starting positions. The traveling
speed is randomly sampled for each agent, and the starting position is sampled as in the non-spawning stationary case
in Figure 3. The agents’ lifetime is set to infinite, and all agents are spawned at the start of the simulation.

Four time samples from the simulation are shown in Figure 5 similar to the previous scenarios. The difference
in this Figure is that the scale changes for different time samples as agents spiral outwards. At t = 4 s all agents are
clustered as in Figure 3. They slowly start spiraling outwards.

At t = 94 s, the agents spiraled out so far that too many level-2 clusters are necessary, yielding nine level-2 cluster
heads. These cannot be clustered in one single level-3 cluster, showing three disconnected trees. At t = 98 s, this
problem is solved by the main tree evicting the top level-2 cluster-head, allowing the right level-2 cluster-head to join.
The three disconnected clusters form a new level-3 cluster, whose cluster-head creates a new level-4 cluster together
with the cluster-head of the first level-3 cluster. One idle agent in the middle is elected to level-4 cluster-head (purple).

9 of 12

American Institute of Aeronautics and Astronautics



(a) t = 40 s (b) t = 140 s

(c) t = 200 s (d) t = 260 s

Figure 6: Spawning spiral movement clustering.

After 200 s, the agents are getting more sparse and disconnect slowly, showing many disconnected agents. However, a
majority of agents are still connected to the main tree.

The scenario shows that handling motion, especially relative motion, is quite complicated for clustering. We show
that our proposed algorithm can handle relative motion. However, a current shortcoming is that sparse agents cannot be
handled well. In future work, this will be addressed to connect as many agents as possible.

D. Spawning spiraling

The spawning spiraling scenario combines the spawning behavior of Figure 4 and the motion of Figure 5. In contrast to
the non-spawning scenario in 5, the agents are expected to remain in some area because they de-spawn. Therefore, the
scale of the graphics can remain unchanging.

At t = 40 s, some agents spawned, starting their spiraling movement. One level-2 cluster formed, containing
all but three agents. As in the stationary spawning scenario, at t = 140 s, all agents are replaced, but the clustering
structure remained and grew further. A level-3 cluster was able to form connecting most, but some sparse agents on the
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outskirts. At time t = 200 s all but one agent are connected to the main tree of which some disconnect at time t = 260 s.
Throughout all time samples, a majority of the agents are connected to the main tree.

This scenario best approximates a real-world flight of UAVs, including relative motion as well as take-off and
landing. After an initial ramp up time, a relatively constant number of active agents can be observed as the de-spawning
agents are replaced. Therefore, a scenario like this can demonstrate how well the clustering can behave in a dynamic,
mostly dense scenario. The proposed algorithm can handle the scenario very well except for sparse outskirts.

V. Conclusion and Future Work

This paper proposed the idea of multi-level clustering to enable communication and coordination in decentralized
systems of autonomous UAVs. From an initial state without any knowledge of their neighbors, agents form tentative
clusters by broadcasting ”hello” messages then subsequently electing cluster-heads to schedule intra-cluster activity.
Cluster-heads use the same strategy to discover neighbors and form higher level clusters. If no neighbors are detected,
clusters periodically toggle between join and create phases, appropriately time-shifted to guarantee overlap with any
other disconnected clusters moving in range. This iterative process of cluster formation and discovery continues until
all agents are connected and synchronized into a single hierarchical tree.

Some basic clustering rules were proposed for maintaining hierarchical integrity in the system and individual
cluster independence. These rules were simulated for different scenarios involving stationary/non-stationary agents
with spawning/no-spawning capabilities. The simulation outcomes were described and discussed.

Future work will explore cluster maintenance strategies, such as cluster size balancing and eviction policies to
improve multi-level clustering. We will introduce performance metrics to assess and quantifiably weigh the merits of
each strategy. These metrics will evaluate connectivity among the agents, communication resources needed for cluster
formation and maintenance, and indicators for efficient dissemination of aggregate state information.
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