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In this paper we present a simulation focused on multi-agent autonomy for lighter-than-air unmanned aerial
vehicles in adversarial environments. While autonomous agents have seen increased use in performing real-
world tasks, the simulation software for testing these agents has lagged behind. One major difficulty in testing
algorithms for multi-agent autonomy is inability to bring software and hardware directly from simulation to the
real world. Realistic environments, physical simulators, hardware and software integration, and communication
networks are a few of the many requirements for this type of simulation. Originally inspired by the collegiate
competition Defend the Republic, this simulation provides users with an interface between Unreal Engine 5 and
Python via a TCP connection that allows for software-in-the-loop testing. Hardware-in-the-loop testing will be
provided in future updates. Unreal provides photorealistic graphics, in-built physics, and simulated sensors.
Data from the environment is sent to Python for processing and control logic and then returned to Unreal so
the agent positions can be updated. The developed architecture is intentionally mirrored with the real-world
systems used in competition by Indiana University to facilitate transfer between simulation and real-world.

I. Introduction

As the field of robotics continues to evolve alongside recent advancements in machine learning, autonomous systems
become more and more relied upon to solve real-world problems. The increased presence of these systems makes
the development and testing of software and hardware prior to deployment all the more important. Highly realistic
simulations that allow integration of hardware and software are one such solution to this testing problem. Simulations
like this are critical due to the inherent difficulty of training and testing algorithms in the real-world. The inherent
unpredictability of robotic actors causes safety risks and requires ample facilities, hardware, and personnel, which all
contribute to the complexity and cost. When training models that require large amounts of data, the problem becomes
even more unrealistic to solve with only real-world data.

The collegiate Defend the Republic (DTR) competition is one such application that pits teams of autonomous
lighter-than-air (LTA) unmanned aerial vehicles against each other in contested airspace.1–13 Because of the LTA
restriction, vehicles face unique weight and computing constraints. LTA restrictions combined with difficulties of
robotics mentioned above makes consistent testing of hardware and software on LTA vehicles unsustainable.

This paper lays the foundation for a multi-agent simulation that allows users to perform research on control,
perception, and communication algorithms without requiring a physical LTA vehicle. We leverage the graphics and
physics of Unreal Engine 5 to simulate image and sensor data similar to what a LTA vehicle would receive in real-world
conditions. Building upon previous work,14 the simulator framework enables agents to receive image and state data,
and return actions to a graphics engine in closed-loop cycles. The simulator’s transfer to real world environments is
validated through a performance test of a YOLOv8 model used in the 2025 Spring DTR competition held at George
Mason University (see comparison in Fig. 1). While this simulation has been developed with DTR in mind, it still
has numerous applications in the broader autonomous multi-agent space. Examples include wildfire containment15,16
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(a) Simulated scene in Unreal Engine mirroring the 2025 Spring Defend the Republic competition.

(b) Real-world scene from the 2025 Spring Defend the Republic competition hosted by George Mason University.

Figure 1. Comparison of mirrored scenes in both Unreal Engine and real life.

disaster relief,17 and satellite internet constellations.18 This simulator is one step towards safe and efficient deployment
of autonomous multi-agent systems.

The following sections are ordered as follows. Section II delves into related work including currently available
simulations, software- and hardware-in-the-loop testing, and recent advancements in 3D mesh creation. Section III
details the specific requirements imposed by DTR and the resulting architectural design choices. Section IV discusses
the design of the simulator environment which includes the graphics engine, networking agents, TCP interface, and
python control logic. Section V validates the transfer of perception models between the real-world and simulation and
tests a full scoring loop of a LTA autonomous vehicle. Section VI summarizes the simulation and proposes future work.
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II. Background

Robotic simulators play an important role in the development of autonomous systems because of the inherent
difficulties surrounding real-world testing. In this section, we categorize and discuss existing simulators and recent
work in 3D mesh creation.

A. Simulation Environments

Several simulation platforms have been developed to support autonomous behavior for individual agents. Gazebo19 is
one such simulation platform that seems to works best with a single agent. Multiple papers focus on single agents in
Gazebo including ground vehicle modeling by Rivera, and TurtleBot navigation by Tamang20.21 Attempts have been
made to perform autonomous navigation in Gazebo for multiple robots as well,22 but other platforms seem better suited
to this problem. During initial research for the paper, we found Gazebo became significantly slower and less stable
compared to other simulations as the number of agents scaled.

There are simulators with direct support for multi-agent autonomy. Notably, CARLA23 can support multi-client
and multi-agent systems. CARLA is built on top of Unreal Engine and focuses on ground-based autonomous driving
systems. Microsoft AirSim24 is another widely used simulator designed for aerial vehicles that utilizes Unreal Engine
to provide photo-realistic environments with realistic physics modeling. Both of the simulators utilize older versions
of Unreal Engine which makes them less appealing for long term use. AirSim in particular requires older versions of
Linux which makes compatibility with certain machine learning packages and libraries difficult. Flightmare25 builds
upon AirSim’s strengths with photorealistic rendering and a physics engine. Flightmare uses Unity instead of Unreal,
but the benefits of both are similar. The particular success of these simulators gave us further confidence that as agents
scaled, Unreal Engine would have no issue handling DTR’s distinct requirements.

Others, like the Starcraft Multi-Agent Challenge26 (SMAC) and Google Research Football27 (GRF) are less focused
on general application, but offer good insight into how multi-agent simulations can be successful for specific problem
spaces. SMAC and GRF were both built to train reinforcement learning algorithms. While this type of algorithm is not
currently used on the LTA systems in DTR, further research may be done in this area with hopes that trained moedls
could see deployment on physical LTAs.

B. Software- and Hardware-in-the-Loop Simulations

Simulation platforms designed for more general use cases often neglect having the ability to test various software or
hardware within training loops. Fayad28 is one early example of hardware-in-the-loop (HIL) testing for missiles. Theile
and Dantsker29, 30 integrated vehicle power awareness for hardware-in-the-loop (HIL) testing of fixed-wing aircraft and
flight control software. Mihalič31 summarizes the importance of hardware-in-the-loop (HIL) as a critical component
to testing physical systems. The LTA vehicles used in DTR are one such system that can benefit from the testing of
hardware and software in a simulated environment. Since the LTA vehicles are a research platform, it can be incredibly
helpful to test control logic, computer boards, and other components before having to fly them in the real world. Unreal
Engine has proper tools to interface between itself and API based servers which can connect to different hardware and
software.

C. Text-to-Mesh 3D Modeling

While Unreal does have the capability to interface, one common concern is that creation of handmade environments
with custom 3D meshes are time-consuming and costly to produce. With the increasing prevalence of text-to-image and
text-to-video models in the past few years, custom 3D mesh generation has become much easier. Magic3D32 is one
such text-to-image diffusion model that allows users to create high quality 3D meshes in less than one hour. While
software of this type is not utilized for the environments created in this paper, the option for future development remains
if more diverse environments are required for testing.
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III. System Architecture

In Defend the Republic, two teams compete within a shared airspace in a game of what is effectively robotic
quidditch. LTA vehicles must capture neutrally buoyant balloons and score them in floating nets while simultaneously
defending against opponent scoring. This game structure leads to a number of competition specific requirements. The
simulation must support a wide variety of vehicle classes. Indiana University alone has designed numerous vehicle
types for different strategic purposes including scoring,33 defense,34 and deception. The simulator must also interface
and provide realistic sensor data for the Python software currently deployed in competition. These requirements are
imposed on top of the more general requirements for simulating autonomous multi-agent systems.

To meet both types of requirements, a simulation architecture that mirrors typical pipelines for real-world vehicles
was constructed. Figure 2 shows the mirrored architectures for a single agent. In simulation, processes are either
performed in Unreal Engine or Python. The transfer of data between the two is performed by a TCP connection.

The process loop of both simulation and real world LTAs goes as follows. First, virtual sensors collect data simulated
by the environment within Unreal’s graphics and physics engine. This could include data from a wide variety of sensors
such as cameras, accelerometers, barometers, gyroscopes, and magnetometers. These are the same sensors that a
physical LTA UAV would use in competition. Then, the information gets passed to the Python software-in-the-loop
which performs processes like sensor fusion, control, planning, communication, and clustering to generate messages
and actuation commands. During competition, messages are transmitted over WiFi to a ground station located outside
the field of play for real-time game monitoring. In simulation, these messages are sent directly to Python. Actuation
commands are sent either to the micro-controller or the physical sim. Unreal receives these commands, then modifies
the positions of the vehicles within the graphics engine. Once the environment is updated, the loop restarts, creating a
continuous feedback cycle between Unreal and Python.
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Figure 2. Depiction of Process Architecture: (a) in Simulation, (b) in Real World; squares represent processes, rounded corners represent
devices.

Even as more agents are added into the simulation, the overall flow remains the same. Agents, with their own
sensors, continue to receive environmental data. Once they process the data, they use it as input to generate actuation
commands and messages that they can pass to both other agents and a centralized ground station. Figure 3 highlights
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Figure 3. Depiction of Multi-Agent Process Architecture

this group of processes. Each individual agent has their own initialization of flight processes, camera sims, and physical
sims. The graphics engine and the network sim are shared between agents. This allows agents to interact with each
other in the same environment. Without this, actors could move freely without fears of running into each other. The
shared network simulation also allows agents to communicate on the same network, which enables coordination.

IV. Methodology

Unreal Engine 5 and Python are linked together with a TCP connection initialized through Python. Unreal
Engine controls the physical, graphical, and sensor components of the simulation while Python code used in the DTR
competition generates control logic. To actually do anything in one of Unreal’s environments, an actor must be created.
The Actor class represents all objects placed or spawned in a particular level. We focus on the Pawn subclass which
denotes any actor that can be controlled by either a human player, or an AI entity.

A. UE5 Actors

Unreal initializes the creation of pawns in two ways. The first utilizes a graphical programming language called
Blueprints which is much simpler than standard C++ coding. This allows users with little coding experience to more
intuitively create actors. Instead of Blueprints, pawns can also be created from scratch with C++ code. This approach
offers more flexibility in the functions you can write for the pawn. The main functions of any pawn can be synthesized
into three parts. The first, BeginPlay(), is called as soon as the pawn is loaded into a running environment in Unreal.
This function creates initial states and variables, and starts reoccurring events. The second, Tick(), is called every frame
during a simulation which allows for reoccurring events like data transfer and reception to occur continuously. The
third, EndPlay(), is called at the termination of the game or when the pawn becomes inactive. EndPlay() performs any
end of game events and removes the pawn from the environment. This paper utilizes two classes of pawns created in
C++. One moves in predetermined trajectories while the other interfaces with Python to decide on controls.
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WaypointPawn was created to simulate adversarial LTA vehicles and non-static targets present in the environment.
Within WaypointPawn, a trajectory can be created with waypoints given upon initialization. This allows users to
generate realistic flight paths for adversarial vehicles and targets based on competition data. Because this class moves
on a predetermined trajectory, there is no need to connect additional sensors to the pawn. Instead, actors can step along
the trajectory at a fixed velocity. While the control logic of WaypointPawn objects is simplistic, it could be further
enhanced to chase or avoid other pawns based on their locations.

NetworkPawn on the other hand uses Python software in the control loop to allow for testing of code used in the
DTR competition. Thus instead of following waypoints, NetworkPawn can dynamically react to objects in its local
view based on real-time control inputs received from Python. To share and receive data between Unreal and Python the
simulation utilizes a TCP connection.

B. TCP Interface

Transmission Control Protocol (TCP) is a communication method that guarantees reliable and errorless data transfer.
TCP enforces a number of protocols including acknowledgments and retransmission to ensure data passes properly
between nodes. This is quite important when it comes to real-time control as incomplete messages could result in the
system not taking any actions and ending up in a dangerous position. TCP can be simplified down to a conversation
between friends in which an introduction must occur before any actual sharing of information. During transmission, the
receiving friend must acknowledge and confirm they understood the message, or request a retransmission. Once all the
information is shared, both friends say goodbye and end the connection.

In simulation, the server to share messages in is created before actors are initialized in the environment. Once the
server has been opened on a specific port, actors initialize a client socket for Unreal. During each tick of simulation,
game data is transformed into binary for easy transmission over the TCP connection. Python receives the data, computes
a binary control output, and returns it back to the Unreal client socket. While TCP is great for its consistency, the
communication checks can cause slowing with large numbers of agents. In the future, we will also consider using User
Datagram Protocol (UDP). UDP skips the acknowledgment phase, which can speed up the overall process at the cost of
guaranteed transmission.

C. Flight Processes

While the actual transmission of data is done through the TCP interface, the computation of control outputs for each
actor is done in Python. These processes govern how the simulated LTAs interpret sensor inputs and make planning
decisions. The flight process diagram is shown in Figure 4. During each tick cycle, the Python server receives the
vehicle’s positional data and camera imagery. From there, the data passes through several critical steps including sensor
fusion, data aggregation, and planning before it outputs a control action.

The first subprocess combines perception and sensor fusion. Camera images are processed using a YOLOv8 model
trained on real-world competition data. Then data us fused together using Kalman Filtering to reduce noise coming
from the multiple inputs. For example, camera data alone might identify a nearby object, but without position and
orientation information, the relative location of that object cannot be properly determined. One potential method to
calculate the relative location is triangulation. By using the camera specifications and comparing the size of the object
in real life to the bounding box size, an approximation of the objects location can be done. The fused state serves as the
base for later planning and control decisions.

If multiple agents are present in the environment and communication is enabled, agents can receive messages about
the global environment from other agents. By aggregating this new information with their own, agents can perform
basic collaborative behavior. Once incoming messages have been combined with local knowledge, the planning stage
can begin.

Planning determines an efficient trajectory for the vehicle to follow. This process begins by checking the current
mission objectives of the agent. For example, if the agent currently is attempting to score a goal, then planned trajectories
should result in the agent moving towards a goal of the correct color. Currently, trajectory planning is as simple as
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Figure 4. Diagram of Flight Processes for a Single Agent

choosing the object that corresponds to the current mission to keep in the center of the camera frame. While this
does not fully utilize the collected data, we are working on implementing segmented trajectories based on locational
data. These trajectories would generate a spline from a number of waypoints that concludes with the goal position.
Constraints can be applied to the calculated trajectory based on velocity, acceleration, or turn radius to ensure realistic
path generation.

Once a trajectory or objective has been selected, the system must compute actuation commands to send to Unreal
Engine. These commands translate the high-level trajectory into a low-level control signal. Competition blimps use
a PID controller for changes in movement in the forward, up-down, and left-right directions. In the current setup,
the Python server encodes these commands into a binary format and sends them back through the TCP socket to the
appropriate Unreal client. This handshake completes the control loop. The simulated vehicle applies the commands,
moves to a new position, and the next cycle begins. Through this continuous process of sensing, planning, and acting,
the simulated vehicle is able to navigate its virtual world autonomously. By performing all computational steps in
Python, the system remains flexible and extensible—allowing for rapid prototyping of new algorithms while retaining a
reliable simulation interface through Unreal. While flight process testing only included a single agent for this paper, the
system architecture is designed to scale to multiple agents with minimal modification. In the next section, we discuss
experimental results with the perception model and control logic used for DTR within the simulation environment.

V. Experimental Results

One of the main reasons for creating this simulation pipeline was to perform software- and hardware-in-the-loop
testing. If the environment in Unreal was not realistic enough, then the perception models used in competition would
not transfer and the pipeline would break down. To ensure we were headed in the right direction, we tested multiple
tasks that an LTA vehicle might perform during a DTR match. First, we tested the reliability of the YOLO model used
in 2025 Spring DTR competition. We also tested software of a new vehicle that tracks and predicts moving objects
within the camera frame. Finally, we tested a normal mission cycle of Indiana University’s primary scoring vehicle.

Testing the YOLO model on simulated data from Unreal Engine was done by manually flying a NetworkPawn
around the environment and taking screenshots of various objects at different distances and orientations. Figure 1
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Figure 5. Image labeled by YOLOv8 perception model sent to a groundstation from simulation. Each object is defined by the center x and y
of the bounding box, the bounding box’s width and height, and the confidence of the model in the prediction. Image resolution and FOV
intentionally mirrors the camera used onboard of a scoring vehicle in competition.

shows the comparison between a live scene from competition and a simulated image with an intentionally mirrored
scene. Objects were shifted multiple times to simulate real-world game conditions in which adversarial LTA vehicles
and neutrally buoyant game balls move around the playing field. Once the images were captured, they were manually
labeled and added to the YOLOv8 model’s test set to determine its accuracy on simulated objects. Results in Table 1
show the accuracy on simulated data is almost equivalent accuracy on real world data. The model did show difficulty
with objects very far away, and mislabeled the light colored walls as yellow goals multiple times. Even still, these results
showed that the YOLO model could recognize objects in simulation even though it was only trained on real-world data.
We believe that the performance of the model in simulation would increase dramatically if a small number of simulated
photos were added to the training set. This is because the simulations lighting is constant. This is something to keep an
eye on because a model that is too accurate in simulation will not mimic the difficulties faced by the LTA vehicles when
lighting is dynamic. In Figure 5 shows the camera image from an LTA vehicle moving towards an orange goal frame.
Other objects in the frame are also recognized by the model. This is a common scene that an autonomous vehicle would
find itself in as it attempts to score.

We also test the target prediction system which estimates the future position of a detected object by analyzing its
recent motion history using a quadratic polynomial fit. Once a target is detected with sufficient confidence, its current
position is stored in a trajectory buffer that maintains the last 10 positions, ensuring that only relevant data is used
for prediction. These polynomial models are then used to predict the target’s position n frames into the future. In
Figure 6, the green game ball is shown within a green bounding box, while the cyan trail indicates its past positions.

Table 1. Perception Model Performance on Simulated Images

Metric Count
Correct Detections 132
Incorrect Labels 22
Missed Detections 14
Total Objects 150
Accuracy on Simulated Data 88.0%
Baseline Accuracy (Test Set) 89.0%
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Figure 6. Image labeled by YOLOv8 perception model. A NetworkPawn tracking a green game ball with yellow goals in the background
records previous positions and predicts future location.

The predicted position, 10 frames ahead in this example, is marked with a red cross. This testing provided further
reassurance that the YOLO model could perform in the simulation environment without additional training data.

After the YOLO model was shown to perform adequately, the vehicle’s mission cycle was tested. Indiana University’s
main scoring vehicle has a mission cycle that can be broken up into four main pieces: find a game ball, capture a game
ball, find a goal, and score a goal. It was demonstrated that a simulated LTA could repeat successful goal scoring when
given environment states similar to what the autonomous vehicle would score on in competition. This confirmation
also opens the door for testing of improved cycles that include localization, different perception models, and obstacle
avoidance. Before, testing new algorithms and scoring cycles would require a physical LTA vehicle to be set up and
maintained for extensive periods of time which was not feasible with limited resources. Now, initial testing can be done
in simulation with physical vehicles only being needed for validation of the simulation results.

VI. Summary and Future Work

This paper presents a simulation for multi-agent autonomy that enables testing of software used in the Defend
the Republic competition. The simulation uses Unreal Engine 5 for graphics, physics modeling, and sensors which
are used by Python via a TCP interface. The developed architecture allows for further development of localization,
communication, and planning protocols that will influence the next iteration of Indiana University’s autonomous LTA
vehicles.

Future work will include the integration of hardware-in-the-loop testing. In particular, we would like to send the
data from Unreal directly to the platforms in Figure 2(b) to perform flight processes and communication protocols.
The physics used in the simulation environment should become more realistic. We are also interested in adding a
discrete-event network simulator like ns-3.35 This would allow us to properly model communication and clustering
events in real-time with the goal of inducing cooperative behavior between autonomous agents. As robotics continues
to gain a foothold in real-world activity, the communication between agents will become more and more important. The
ability to test these interactions in simulation before deployment is critical, and we hope this work acts as a step in the
right direction towards safe deployment of autonomous agents in the real world.
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31Mihalič, F., Truntič, M., and Hren, A., “Hardware-in-the-Loop Simulations: A Historical Overview of Engineering Challenges,” Electronics,
Vol. 11, No. 15, 2022.

10 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 1

29
.7

9.
19

7.
11

4 
on

 A
ug

us
t 2

1,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
38

04
 



32Lin, C.-H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis, K., Fidler, S., Liu, M.-Y., and Lin, T.-Y., “Magic3D: High-Resolution
Text-to-3D Content Creation,” 2023.

33Taylor, C. and Dantsker, O. D., “Lighter-Than-Air Vehicle Design for Target Scoring in Adversarial Conditions,” AIAA Paper 2024-3896,
AIAA Aviation Forum 2024, Las Vegas, NV. 2024.

34Taylor, C. and Dantsker, O. D., “Lighter-Than-Air-Vehicle Design for Adversarial Defense,” AIAA Paper, AIAA Aviation Forum 2025, Las
Vegas, NV. 2025.

35Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., and Kopena, J., “Network Simulation with the ns-3 Simulator,” SIGCOMM
demonstration, 2008.

11 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 1

29
.7

9.
19

7.
11

4 
on

 A
ug

us
t 2

1,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
38

04
 


