
uavAP: A Modular Autopilot Framework for UAVs

Mirco Theile*, Or D. Dantsker†, Richard Nai‡, and Marco Caccamo §

Technical University of Munich, Garching, Germany

Simon Yu¶

University of Illinois at Urbana–Champaign, Urbana, IL, USA

Being applied to many fields of research and industry, UAVs require reliable but modular autopilot soft-
ware. An autopilot task can range from simple waypoint following to complex maneuvering or adaptive mission
tracking. The developed and presented autopilot, uavAP, aims to be fully modular in a decentralized manner,
embracing an object-oriented design in C++. It implements a typical control stack comprising of a mission
planner, global planner, local planner, and controller. To facilitate its modularity, uavAP makes use of its core,
cpsCore, for module management as well as core utilities. cpsCore administers the configuration, aggregation,
and synchronization of all the modules in uavAP. With the emulation environment uavEE, uavAP forms an
ecosystem for rapid prototyping and testing of modules for various research directions, ranging from schedul-
ing and memory management, through planning and control system design, to flight profile and configuration
optimization. The uavAP-uavEE ecosystem has facilitated the design of an accurate UAV power model based
on the aircraft’s physical model, flight maneuver automation for aircraft system identification and dynamics
parametrization, and an algorithm for geo-fencing of fixed-wing UAVs. This paper describes the control stack
of uavAP, its core, cpsCore, as well as application examples highlighting the framework’s modularity and
flexibility.

I. Introduction

The popularity of UAVs in many fields of research and industry creates the need for reliable but modular autopilot
software. An autopilot task can range from simple waypoint following to complex maneuvering or adaptive mission
tracking. While there are existing autopilot systems with excellent community support, they are not sufficiently modular
to enable rapid adaptability to varying research directions. The developed and presented autopilot, uavAP, aims to be
fully modular in a decentralized manner, embracing object-oriented design in C++. Every functionality in uavAP is
provided by a module, which can be adapted or replaced.

uavAP is an open-source autopilot framework.1 The autopilot structure is designed for distributed functional
executions that separate control, planning, and communication to increase safety and security at software level. It
implements a typical control stack comprising of a mission planner, global planner, local planner, and controller. The
high-level and abstract design of uavAP allows for seamless switching and transition between various planning and
control algorithms. The customizability of the autopilot structure provides the flexibility that allows for rapid interfacing
with various hardware systems such as the Al Volo FC+DAQ system,2 which is used for high precision data collection
necessary for applications such as power modeling.

To facilitate the modularity, uavAP makes use of cpsCore for module management as well as core utilities. cpsCore
administers the configuration, aggregation, and synchronization of all the modules in uavAP. Through these steps,

*Ph.D. Student, Department of Mechanical Engineering. mirco.theile@tum.de
†Researcher, Department of Mechanical Engineering, or.dantsker@tum.de
‡M.S. Student, Department of Informatics, richard.nai@tum.de
§Professor, Department of Mechanical Engineering, mcaccamo@tum.de
¶Ph.D. Student, Department of Electrical and Computer Engineering. jundayu2@illinois.edu

1 of 24

American Institute of Aeronautics and Astronautics

each module can easily specify a set of parameters which are loaded and applied on program startup, communicate
and interact with other modules, and start their task synchronously throughout threads and individual processes.
Additionally, cpsCore offers core utilities for essential tasks such as scheduling, inter-process communication, and more.
While initially only the core of uavAP, cpsCore has become an individual project because of its valuable support for
modularization of any C++ software framework for cyber-physical systems (CPS).

The uavAP autopilot framework forms an ecosystem with uavEE, an open-source emulation environment for
UAVs.3, 4 uavAP interfaces with uavEE for the communications with flight simulations while uavEE enables rapid
testing and debugging of the uavAP autopilot framework and planning and control designs and implementations. More
importantly, the combination of the uavAP and uavEE framework has enabled projects on variable applications in a
wide range of areas. The uavAP-uavEE ecosystem has facilitated the design of an accurate UAV power model based
on the physical model of the aircraft. Additionally, a flight maneuver automation framework5 has been developed in
uavAP and tested in uavEE. The framework automates flight testing maneuvers for aircraft system identification and
dynamics parametrization,6 yielding more consistent and repeatable results than human operators. Finally, an accurate
kinematic model and algorithm for fixed-wing aircraft geo-fencing have been developed using uavAP and uavEE.7

The paper is structured as follows: In Section II, the autopilot framework uavAP is introduced with a summary of its
planning and control stack and distributed architecture. This is followed by a description of its underlying core, cpsCore,
which manages the modules and provides core utilities. In Section IV, a flight maneuver automation integration into
uavAP is shown as an example of uavAP’s modularity and flexibility. Some applications of uavAP are shown in Section
V, followed by a comparison with other open-source autopilots in Section VI. Section VII concludes the paper and
presents an outlook into future work.

II. Modular Autopilot Framework – uavAP

This section describes the autopilot framework by introducing the implemented control stack and its individual
modules. Furthermore, its distributed architecture is depicted and described.

A. Planning and Control Stack

Mission Planner

Global Planner

Local Planner

Controller

Waypoints

Trajectory

Control Target

Actuation

Figure 1. Planning and control stack implemented in uavAP.

2 of 24

American Institute of Aeronautics and Astronautics

The hierarchy of the control process can be represented by a stack, depicted in Figure 1. A mission planner generates
waypoints according to the overall mission. The waypoints are passed to the global planner, which calculates the
mission trajectory. Based on the trajectory and the current position of the aircraft, the local planner calculates the
necessary angular rates and velocities to reach the trajectory, formulating a controller target. This controller target is
passed to the controller, which calculates the actual actuator commands. The individual modules, as implemented in
uavAP, are described in the following.

1. Mission Planner

The mission planner uses predefined missions, which can be selected by the user at run-time. The predefined mission
consists of waypoints which should be passed in specified order with a specified velocity. Alternatively, the mission
planner could generate waypoints to adapt its mission. However, this is out of scope for this work.

2. Global Planner

The global planner’s task is to calculate a trajectory based on the set of waypoints received from the mission planner.
The calculation of the trajectory can differ based on the overall goal of the mission. The simplest global planner is to
connect the waypoints with lines, leading to a polygonal path, which is not the best solution since it leads to abrupt
turns and consequently, high deviations from the planned trajectory. Alternatively, the waypoints can be connected with
three-dimensional cubic splines, which are implemented in the SplineGlobalPlanner in uavAP.

A cubic spline is defined through a third degree polynomial

x(u) = fx(u) = c0,x + c1,xu+ c2,xu2 + c3,xu3. (1)

The parametrization u ∈ [0,1] is defined such that for u = 0 the spline is at the start point and at u = 1 at the end point.
Extending this expression to three dimensions yields

~x(u) = f(u) = c0 + c1u+ c2u2 + c3u3, ~x =

x
y
z

 , ck =

ck,x

ck,y

ck,z

 (2)

for one specific spline. The spline between the waypoints pi and pi+1 is defined by

~x(i,u) = fi(u) = c0i + c1iu+ c2iu
2 + c3iu

3. (3)

The SplineGlobalPlanner uses the Catmull-Rom formulation to calculate the parameters of the splines. The complete
mathematical derivation can be found in.8 Catmull-Rom splines enforce a specified tangent at each waypoint. The
tangent is based on the previous and next waypoint, making each spline dependent on only four waypoints. Defining
Ci = [c1i ,c2i ,c3i]

T , the spline parameters can be calculated as follows:

Ci =

−τ 0 τ 0
2τ τ−3 3−2τ −τ

−τ 2− τ τ−2 τ

pi−1

pi

pi+1

pi+2

 (4)

and c0i is pi. The parameter τ indirectly defines how high the curvature is at the waypoints. A higher τ reduces the
curvature at the waypoint but increases the curvature between the waypoints. Since each spline is dependent on a
constant number of four waypoints the complexity of the Catmull-Rom spline generation is O(n), where n is the total
number of waypoints in the mission. The SplineGlobalPlanner implements the calculation of Catmull-Rom splines

3 of 24

American Institute of Aeronautics and Astronautics

(a)

(b)

Figure 2. Catmull-Rom spline problem (a) and solution (b) for the z-coordinate spline.

because of their simplicity. The generated trajectory at its z-coordinate projection, however, shows problems when using
the Catmull-Rom formulation. Figure 2(a) shows a side view of the trajectory. The black arrows show the tangents at
the waypoints, which lead to unwanted altitude changes. The solution to this problem is to decouple the z-calculation
from the calculation in (4). The tangent at the waypoints is set to the minimum absolute slope of three different slopes
shown in Figure 2(b) on the left side. The three different slopes result from the vectors connecting the previous and
the current waypoint, the current and the next waypoint, and the previous to the next waypoint. This modification is
possible since the Catmull-Rom formulation allows for local control at each waypoint.

3. Local Planner

Figure 3. Three examples of the super-position in the Linear Local Planner; The X shows the position of the aircraft, and the green line is
the super-position of the tangential and the orthogonal components in black. The dashed green arrow incorporates the curvature.

The trajectory that is calculated in the global planner is passed to a local planner. The local planner calculates the
velocities and angular rates that are needed to converge to the trajectory. When the aircraft is moving on the trajectory,

4 of 24

American Institute of Aeronautics and Astronautics

the local planner calculates velocities and angular rates to stay on it. In the case of the LinearLocalPlanner in the
uavAP framework, the functionality is a super-position of the movement on and towards the trajectory. A graphical
representation of this super-position can be seen in Figure 3 represented by the solid green line.

Besides the super-position to calculate the target direction, the local planner can also incorporate the slope and
curvature of the trajectory. For this, the planner first calculates the closest point on the trajectory to determine the
local curvature and slope. For a line and orbit, the calculations of the closest point, the curvature, and the slope are
straight-forward. The calculations for the SplineGlobalPlanner are based on the derivatives of (3). The results of adding
the local curvature to the plan can be seen in Figure 3 represented by the dashed lines. A curvature target leads to
an offset from the direction target of the super-position in the direction of the curvature, which allows the aircraft to
converge faster.

4. Controller

RollPID RollRatePID

VelocityPID

ClimbAnglePID PitchPID

RollTarget

Roll

ClimbAngleTarget

ClimbAngle

VelocityTarget

Velocity

Acceleration

RollRate

PitchRate

Pitch

PitchTargetConstraint

RollRateTargetConstraint

ElevatorConstraint

AileronConstraint

ThrottleConstraint

ElevatorOutput

AileronOutput

ThrottleOutput

RollRate

Figure 4. PID cascade: orange inputs represent the controller target from the local planner, green inputs are representing sensor data, and
the yellow outputs are defining the actuation command.

Using the controller target, defining angular rate and velocity targets, the controller calculates the necessary actuation
command. For its controller, uavAP uses cascaded PIDs. The schematics of the controller cascade is shown in Figure
4. The cascade consists of five PIDs that are connected in series or parallel to achieve the actuation calculation. The
cascade can be separated into three different parts, yaw-rate control, climb-rate control, and velocity control. Additional
PIDs can be used to actuate the rudder of the aircraft for β control.

The advantage of this PID cascade is that it is easy to set up and tune for different aircraft, using on-line tuning, as
well as allowing intermediary constraints, such as the constraints on roll and pitch. Additional PIDs can be added if
roll-rate or pitch-rate has to be constrained as well. On-line tuning is done using the ground station of uavAP, a part of
uavEE.

5 of 24

American Institute of Aeronautics and Astronautics

Watchdog

Flight Control

Mission Control

Communication APIsensor_data

actuation

sync_run

trajectory

data_com_mc

data_com_fc

data_mc_com

data_fc_com

Figure 5. Control stack implementation showing processes and inter-process communication, green lines are message queues and blue lines
and ellipses shared memory objects.

B. Distributed Architecture

The processes implementing the control stack and the periphery are visualized in Figure 5. Mission control is taking
care of mission planning, and global planning and flight control is implementing the local planner and controller. The
two are separate in order to protect the essential flight control from crashes or timing issues in mission control.

The watchdog process is the master of the synchronization in the start-up of the processes. Afterward, it monitors
the processes, allowing them to restart them if they terminate or show a failure state. Additionally, the watchdog can
perform strict scheduler monitoring conducting restarts of the processes if they are missing their deadlines.

The communication process is the interface of the autopilot to the outside, mainly the ground station. It is a separate
process because it handles IO operations that can be slow or unpredictable. Additionally, since it is not mission-critical,
if the communication process crashes, the other processes can continue unaffected. The main task of the communication
process is to offer tuning, overriding, and selection interfaces to all the other processes. Additionally, it periodically
sends the status information from flight control to the ground. If the user at the ground station requests the active
mission and trajectory, the communication process forwards these requests to the appropriate process.

The API itself is not a process, but it is used by any background process that is responsible for the collection of
sensor data and the actuation of the actuators using the actuation command. The implementation of the data collection
can differ, but the API is defined in uavAP.

III. Autopilot Core – cpsCore

The core functionality of uavAP is grouped into cpsCore,9 a C++ framework designed to simplify the design and
implementation of cyber-physical systems. The cpsCore can be used as a baseline for modular object-oriented C++
frameworks. It allows for configuration, aggregation, and synchronization of individual modules and provides utility
modules for a variety of standard tasks such as scheduling. This section describes cpsCore and its role within uavAP.

6 of 24

American Institute of Aeronautics and Astronautics

A. Module Management

To facilitate uavAP’s high module configurability, cpsCore contains the functionality to parse configuration files for
configurable classes and create and arrange them on process start-up in a modular manner. The process uses a Helper
module, a module with knowledge of all possible modules that can be created to parse the configuration, which then
generates and configures the specified modules. These modules are passed to an Aggregator, which aggregates the
modules. This aggregation is then synchronized in stages and, if successfully passing all the stages, allowed to start its
schedule of tasks. This process is depicted in Figure 9. An example of the SplineGlobalPlanner’s usage of cpsCore is
provided in Figure 6. Specific details of configuration, aggregation, and synchronization are presented in the following.

class SplineGlobalPlanner : public IGlobalPlanner,
//uavAP: Its interface class
public AggregatableObject<ILocalPlanner, IPC, DataPresentation>,
//cpsCore: Dependencies to a local planner (uavAP), inter-process
// communication (cpsCore), and data presentation (cpsCore).
// Allows it to be aggregated.
public ConfigurableObject<SplineGlobalPlannerParams>,
//cpsCore: Struct with its parameters that should be configured
public IRunnableObject
//cpsCore: Indicating that it implements a run function for
// synchronization

{
...
};

Figure 6. Inheritance of the SplineGlobalPlanner using cpsCore’s functionality.

1. Configuration

Configuration is used to make the module assembly and the modules themselves configurable. Typically a JSON file is
used to define the configuration. However, support for other file types could be added easily. The configuration file
indicates which objects are to be created and how their parameters are to be set. A parameter struct is used to specify
the parameters of each object. An example is that of the SplineGlobalPlanner, as shown in Figure 7. In this struct, the
default value, the corresponding string in the configuration file, and the mandatoriness, indicating if the parameter has
to be specified in the configuration file, are defined. The templated configure(Config& c) function provides the
C++ struct with reflection, a concept that allows, among others, the struct to be iterated over. A corresponding JSON
type configuration file is shown in 8.

Additionally, the parameter structure is used to generate configuration files, showing all the possible parameters
that can be modified. This is particularly helpful while adding new modules to help maintain configuration files. The
parameter structure could further be used through other means of configuration, such as a graphical user interface, as
the basic structure of configuration is templated and allows for the necessary modifications.

2. Aggregation

The concept of Aggregation is a decentralized solution for setting pointers to dependencies within a process. Instead of
having one entity knowing all the dependencies of each module and setting all of them, an Aggregation of the modules
is formed. Each module that is an AggregatableObject can browse through the Aggregation for its dependencies. If
found, a weak pointer to the dependency is created and stored, which can be retrieved and upgraded to a shared pointer

7 of 24

American Institute of Aeronautics and Astronautics

struct SplineGlobalPlannerParams
{
// Parameter type name default id mandatory

Parameter<float> orbitRadius = {50.0, "orbit_radius", false};
Parameter<float> tau = {0.5, "tau", false};
Parameter<bool> smoothenZ = {true, "smoothen_z", false};

template <typename Config>
inline void
configure(Config& c)
{

c & orbitRadius;
c & tau;
c & smoothenZ;

}
};

Figure 7. Parameter structure of the SplineGlobalPlanner.

{
"orbit_radius": 50.0,
"tau": 0.5,
"smoothen_z": true

}

Figure 8. Generated .json configuration file of structure in Figure 7.

using a templated get<Dependency>() function. The weak pointer is used to avoid circular ownership, which can
lead to complications during tear down.

The Aggregator is the owner of the objects in a process and is therefore responsible for their destruction when the
process is terminated. To do so in a predictable manner, the Aggregator first stops active subscriptions, to avoid triggers
from other processes. Second, the scheduler is stopped, descheduling all of the periodic events. Finally, the Aggregation
container of the Aggregator can be emptied, destroying the aggregated objects sequentially.

3. Synchronization

Synchronization in a distributed system is a crucial factor for clean and predictable behavior. Especially if there
are dependencies between processes that need to be established first, synchronizing the start-up phase is crucial. In
uavAP synchronization is conducted among the modules inside one process, and among the processes in a distributed
multi-process setup.

As described before, the schematic, shown in Process 2 of Figure 9, illustrates the start-up steps of one single
process. For synchronization, a Runner utility sequentially triggers the current run stage for each module before moving
on to the next stage. It first triggers the INIT run stage. In this stage, each module should check if all its dependencies
are met. If not, the Runner aborts and prints corresponding error messages. In run stage NORMAL, the objects schedule
their tasks or communicate with other objects to set up the process. Run stage FINAL is reserved for tasks that need
three steps to set up. After run stage FINAL, the scheduler is triggered to start its schedule.

For multi-process synchronization, as necessary in Figure 5, the single process case is extended. An entity, such as
a Watchdog, starts all the desired processes, waiting until they all reach the beginning of run stage SYNC, which is
an idle run stage that is used to wait for the other processes. When all the processes reached that point, the Watchdog

8 of 24

American Institute of Aeronautics and Astronautics

Helper

Aggregator

Start Schedule

SynchRunner

INIT

NORMAL

FINAL

Process 2Process 1 Process 3

… …

Watchdog

SynchRunner
Master

Configuration

Objects

Aggregation

Scheduler

……
…… Trigger RunStage

Feedback on success

Figure 9. Multi process synchronization in uavAP

triggers the run stage INIT. All the processes now run their INIT run stage. If they succeed and do not discover a
problem, they notify the Watchdog that they succeeded. This is handled by using thread barriers with a count of the
number of processes. If they do not succeed, they do not notify the Watchdog leading to a time-out that lets the user
know that one of the processes failed. After run stage INIT, the same synchronization procedure is executed for run
stage NORMAL, followed by FINAL. After every process runs into the thread barrier of stage FINAL, they start their
schedule simultaneously. In the multi-process case, the synchronization information is shared with a segment of shared
memory, maintained by the synchronization master, e.g., the Watchdog.

B. Core Utilities

The core utilities of cpsCore comprise of functionality that is frequently used in CPS applications such as uavAP or also
uavEE. They are implemented to be as generic as possible while allowing low-level optimization. These core utilities
are used for scheduling, timing, inter-process communication, inter-device communication, and data presentation.

1. Scheduling and Timing

A scheduler handles every scheduling of periodic and non-periodic tasks in the autopilot. Any scheduler that is
implemented should provide the ability to schedule periodic and non-periodic events as well as the possibility to start

9 of 24

American Institute of Aeronautics and Astronautics

and stop the schedule. The current main scheduler of uavAP is the MultiThreadingScheduler, which, as indicated by its
name, uses multiple threads to execute tasks in parallel. When a task is scheduled, the scheduler creates an event object.
Each event contains the function handle, scheduling information, a condition variable, and a thread for execution. The
scheduler triggers the individual condition variables at the time of the task release. After completion of their tasks,
the threads either end execution, if they were non-periodic or canceled, or wait until called again. The time provider
handles the timing of the scheduler.

Any time provider in cpsCore has to provide the current time and the ability to sleep for a set amount of time or
until a specific time point. The time provider used in uavAP is the SystemTimeProvider, which uses the standard chrono
time library to provide time information as well as timing functionality, such as wait for or wait until. For manual time
and scheduling control, essential for unit testing, the MicroSimulator can be used. It provides objects with manual time
and scheduling information allowing full control during testing.

2. Inter-Process Communication

For the communication among processes, such as Mission Control and Flight Control, cpsCore offers inter-process
communication (IPC) utilities. The IPC module allows message passing to one or multiple destinations. If communica-
tion to only one destination is requested, the IPC module creates a message queue to which the destination process can
subscribe. For multiple destinations, the module creates a shared memory segment, allocating space for the data as well
as synchronization fields. The destination processes can find the message queues or shared memory segments via string
IDs. The general implementation is similar to message brokering, allowing publication and subscription.

3. Inter-Device Communication

To communicate with other devices, such as the ground station in uavAP, cpsCore provides utilities for inter-device
communication (IDC). The IDC is split up into two layers, the transport layer, and the network layer. The transport layer
is a current place holder if packet segmentation and acknowledgments are to be added. The network layer takes care
of the dissemination of the packets to their destination. For that, it can use serial communication using the boost asio
backbone, or ethernet communication using Redis,10 specifically its message broker service. For packet verification,
crucial for radio communication, a cyclic redundancy checksum (CRC) is implemented. The checksum is appended to
each packet and can be verified on the receiving end.

The network and transport layer functionality are hidden from the other modules by providing an IDC module,
which routes the packets according to configured string IDs. This way, the communication method can be changed
through configuration and does not require recompilation or rewriting of code.

4. Data Presentation

For IDC and IPC, the data structures in uavAP have to be represented as binary. For passive data structures or plain old
data (POD), this binary representation is as simple as a memory copy, provided the sender and receiver device use the
same endianness. For more complicated structures with optional fields or nested members, cpsCore provides a data
presentation utility. Similar to the configuration, the data presentation adds functions for code reflection, which specify
how to serialize and deserialize structures. Using these functions, data presentation creates string-based packets from
the complex structures which can be sent via IPC or appended with headers and send via IDC.

10 of 24

American Institute of Aeronautics and Astronautics

IV. Flight Maneuver Automation Framework – uavAP Extension

The introduced uavAP software framework allows for a simple and configurable extension of a flight maneuver
automation framework on top of the existing software stack. The flight maneuver automation framework utilizes the
introduced cpsCore framework to extend the current mission planner module, enabling automatic maneuver executions
and transitions. A new flight analysis process is also added for providing the extended mission planner module with
various aircraft states analysis needed for automating the aircraft flight maneuvers.

The current mainstream approach for collecting aircraft aerodynamic parameters is to manually pilot UAVs through
a series of flight testing maneuvers.11–15 Automating such flight testing maneuvers,5, 6 on the other hand, allows for
the process of aircraft parametrization and modeling to be performed systematically and repeatably with minimal
trial-and-error, and, more importantly, reduces the required amount of flight time and power consumption. For instance,
by automating maneuvers during the flight, aircraft states such as attitude angles and velocity vectors can be set and
maintained by controllers with better accuracy, consistency, and repeatability than manual piloting.

As the industry of small UAVs becomes increasingly popular, the safety and regulation for these small aircraft are
also becoming essential for their applications and deployment. One of the useful and practical methods of executing the
safety regulations on those small aircraft is to require them to have mandatory and built-in geo-fencing systems that
provide constraints to their behaviors and missions. The flight maneuver automation framework, together with a robust
and precise kinematic model detailed in,7, 16 forms an advanced geo-fencing system for UAVs to perform trajectory
modeling, boundary checking, and automated evasive maneuvers.

A. Maneuver Planner

As discussed in Section II, the mission planner module in the uavAP software framework provides high-level mission
planning and global plan generation. The existing global planner in the mission planner module takes mission waypoints
as input parameters and generates a position-based trajectory as its output. The generated trajectory is then passed to
the flight control module for local planning and controller target generation. In the above pipeline, flight maneuvers are
generated by the local planner as controller targets for keeping the aircraft on the planned trajectories.

The existing global planner is useful for simple and fixed-path missions such as a race track flight path illustrated
in Section V for surveying and power modeling. However, such missions limit the UAVs to fixed, position-based
trajectories which prevent the aircraft from performing customized maneuvers aside from path-keeping. Therefore,
in order to achieve more advanced autonomous UAV applications such as flight testing maneuver automation and
geo-fencing, a more versatile mission planner is needed for planning and sequencing ad-hoc and customized flight
maneuvers.

The new maneuver planner extends and augments the uavAP planning and control stack to achieve customized
and flexible planning. Specifically, the maneuver planner generates user-defined flight maneuvers into override objects
through the cpsCore configuration framework detailed in Section III. Such maneuvers, containing local plans, controller
targets, controller outputs, and more, are published through cpsCore’s IPC, as illustrated in Figure 10, to the respective
modules, in which the regular mission is overridden until after executing the received flight maneuvers.

In this design, the maneuver planner provides versatile, trajectory-independent capabilities in terms of aircraft states.
For instance, if a 45 degree right-rolling maneuver were needed for a particular application, the maneuver planner
would simply generate a flight maneuver containing a roll angle controller target of 45 degrees and publishes such
maneuver to the controller module for execution. When the maneuver was executed, the aircraft would override the
regular trajectory and roll right at 45 degrees from its current state in a trajectory-free manner.

11 of 24

American Institute of Aeronautics and Astronautics

User
Configuration Global Planner

Maneuver Set
Generation

Maneuver Set

Override
Objects

Local Planner

Controller

Aircraft

Inter-Process
Communication

Maneuver Planner Planning and Control Stack

Local Plan

Controller Target

Controller Output

Override

Override

Figure 10. The maneuver planner pipeline and the uavAP planning and control stack (mission planner omitted). The override objects,
representing the maneuvers, are generated by the maneuver planner, published through the cpsCore IPC framework discussed in Section
III, and are subscribed by the uavAP stack for maneuver execution.

Furthermore, the maneuver planner is also capable of concatenating a series of individual flight maneuvers into
a maneuver set, as shown in Figure 11, and executing through the set sequentially under some predefined transition
conditions. Similar to a finite state machine (FSM), the maneuver planner stays at the current maneuver in a maneuver
set and only continues to the next maneuver when the transition condition is met. When all the maneuvers in the
maneuver set are exhausted, the maneuver planner halts, and the aircraft returns to its regular mission.

Maneuver
1

Maneuver
3

Maneuver
2

Maneuver Set

…

Condition 1 Condition 3

Condition 2

Figure 11. An example of a maneuver set, containing a series of individual flight maneuvers connected by their transition conditions.

B. Flight Analysis

For automating customized flight maneuvers with various traits, a new flight analysis process is needed in addition
to the maneuver planner for analyzing various aspects of the aircraft during the flight. First of all, the analysis data
provided by the flight analysis module can be used by either the uavAP modules during the flight or by post-processing
programs through data collections after the flight. For example, during the execution of a particular maneuver set with

12 of 24

American Institute of Aeronautics and Astronautics

the maneuver planner, states of the aircraft are useful for post-processing, graphical visualization, scientific research
and validation, and so on.

More importantly, automating the customized flight maneuvers often requires information about various aircraft
states during the flight, such as whether the controllers have reached their steady states, aircraft control surface trims,
how much time has elapsed since the start of the current maneuver, etc.5 Maneuvers in many applications should
transition to the next maneuver only when the roll angle controller of the aircraft has reached its steady state, i.e., the
controller has stabilized around its given target. The flight analysis module would provide this steady-state information
and enable the enforcement of such transitions.

V. Applications

The uavAP autopilot has thus far been applied to 3 platforms: the prototyping ecosystem emulation environment,
uavEE; a robust, fixed-wing, testbed unmanned aircraft, the UIUC Avistar UAV; and a long-endurance, computationally-
intensive, solar-powered unmanned aircraft, the UIUC-TUM Solar Flyer. Between these 3 platforms, the uavAP
autopilot has enabled: the rapid prototyping of flight modeling and control algorithms in emulation and real flight, the
design of an accurate UAV power model based on the physical model of the aircraft, flight maneuver automation for
aircraft system identifications and dynamics parametrization, an algorithm for geo-fencing of fixed-wing UAVs, and
power-efficient flight through a turbulent and windy environment.

A. uavEE Emulation Environment

In order to decrease development time, emulation and modeling has become an important component of the UAV
development process. Instead of prototyping, testing, and analyzing through the many stages of aircraft development
in hardware, which is resource and time intensive, a virtual aircraft and its sub-systems were modeled and then
implemented into the uavEE emulation environment.4 Specifically, the environment starts by creating a real-time
connection between a high-fidelity flight simulator (e.g. X-Plane 11) and an autopilot software, i.e., uavAP on a desktop
machine or embedded hardware, and then modeling layers are introduced (e.g. power, communication, fault, etc.),
allowing for additional emulation complexity. Therefore, the physical aircraft design, the software, and the flight
computation and possibly payloads can be tested in the lab. Within the scope of applying the uavAP autopilot to
research tasks, uavEE was used to emulate each of the research efforts presented in the following subsections before
they were tested on an actual aircraft. uavEE also provides the backbone for a ground control interface, shown in Figure
12, which is used to command and monitor the aircraft and autopilot in both emulation as well as in real flight.

B. Avistar UAV Testbed

The Avistar UAV is a highly-robust, fixed-wind unmanned aircraft, which has been used as the testbed plaform for a
variety of flight software and hardware development efforts.17–21 The aircraft was developed from the Great Planes
Avistar Elite fixed-wing trainer-type radio control model and has wingspan of 1.59 m and a mass of 3.70 kg. The
completed flight-ready aircraft is shown in Figure 13 and its physical and component specifications can be found
in previous work.22 The uavAP autopilot was integrated into the Al Volo flight control and data acquisition system
installed in the Avistar UAV in order to enable several avenues of research: a high-fidelity, low-order propulsion power
model for fixed-wing electric unmanned aircraft, a flight testing automation tool for aircraft system identifications and
dynamics parametrization, and an algorithm for geo-fencing of fixed-wing UAVs.

13 of 24

American Institute of Aeronautics and Astronautics

Figure 12. The uavEE ground station interface, which provides functionality in emulation and real flight; it is shown being used to automate
a pitch doublet maneuver as part of the flight testing automation process.

Figure 13. Flight-ready Avistar UAV.

1. Propulsion Power Model for Fixed-Wing Electric Unmanned Aircraft

A high-fidelity, low-order power model for electric, fixed-wing unmanned aircraft19 was developed and integrated into
uavEE. Previous works have separately looked at aircraft power modelling23–25 and propulsion system modelling26–28

with varying degrees of assumptions and verification. Compared to existing works, the propulsion power model
developed provides a more holistic approach to UAV propulsion power modeling and has been tested under realistic
flight conditions. The power model uses propulsion system modeling of the propeller and motor as well as aircraft
power modeling using flight mechanics derivations. In order to enable online computation with limited resources, the
resulting expression has been limited to using only measurable aircraft state variables, propulsion system parameters
and curves, and (scalar) constants. The final expression for the developed power model is:

Ppropulsion = Kp
v3

ηpηm
+Ki

cos2 γ

ηpηmvcos2 φ
+mg

vsinγ

ηpηm
+m

~a ·~v
ηpηm

(5)

where Kp and Ki are scalar constants that can be determined from aircraft specifications or can be learned through linear
regression with non-linear kernel using a training data set. Note that complete derivation and validation can be found in
related work.4, 19

14 of 24

American Institute of Aeronautics and Astronautics

The resulting power model was evaluated by means of flight testing using uavAP. By flying a reference flight path,
containing turns, climbs, descents, and straight line segments, the flight testing showed very close agreement between
the power and energy estimates determined using the power model from aircraft state data and actual experimental
power and energy measurements. Additionally, using the emulation environment, the reference flight path was also
flown using the same autopilot and a simulated radio control model aircraft trainer, which was very similar to the one
used in experimental flight testing. These flight paths are displayed in Figure 14. The flight path was nearly identical
with the exception of 2 corners, where in experimental flight testing, light wind gusts deviated the aircraft slightly.
The power and energy data generated was in close agreement with the experimental data as can be seen in Figure 15.
The significance of this result is that the developed propulsion power model is able to accurately estimate the power
consumption of an electric UAV based on flight path state, without needing precise aerodynamic measurements or
estimation, e.g. angle-of-attack. Therefore, power estimation can be done with minimal computation.

0

100

200

300

400

500

600

0

100

200

300

400

500

600

100

120

140

160

 − Experimental
 − Simulated

Northing (m)Easting (m)

A
lt

it
u
d
e

(m
)

Start

End

Figure 14. Comparison of aircraft path for experimental (red) and simulated flight (green) results; the airplane is plotted at 6x scale and
every 2 seconds.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

100

200

300

400

500

600

P
ro

pu
ls

io
n

P
ow

er
 P
 (W

)

Measured
Modeled
Simulated

(a)

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

2

4

6

8

10

12

14

16

Pr
op

ul
si

on
 E

ne
rg

y
C

on
su

m
ed

 (K
J)

Measured
Modeled
Simulated

(b)

Figure 15. Comparison of (a) propulsion power and (b) energy consumed from experimental measured (red), experimental modeled (blue),
and simulated (green) results using the propulsion power model.

2. Flight Testing Automation

The current state-of-the-art in performing flight testing maneuvers for aircraft parameterization has been manual piloting
with instruction relayed through flight test cards. Performing manual flight maneuvers off of manually read test cards
has shown to require thousands of hours of costly flight testing.29 There have been ongoing efforts to parameterize
aircraft dynamics on manned and unmanned aircraft using multi-sine and stick-shaker inputs. However, these can be
error-prone, very computationally intensive, and require large datasets.30–32 Instead, the flight maneuver automation
framework, described in Section IV, extends the existing uavAP stack to streamline the flight testing and flight dynamics

15 of 24

American Institute of Aeronautics and Astronautics

parameterization processes of an unmanned aircraft.6 The flight maneuver automation framework is able to command
the aircraft through a user-defined, conditional set of motions and states to induce certain maneuver sets, which allow
for dynamics to be more easily parameterized; these sets of maneuvers, motions, and states follow manned flight testing
techniques.33 Maneuvers of interest that have been implemented into the automation framework included: idle descent,
stall, phugoid, doublets, and singlets, which provide the basis for determining the aircraft aerodynamics, longitudinal
stability, and control effectiveness, respectively. Additionally, automating the data collection process using the new
flight analysis module allows for reliable data selecting, eliminating work hours of parsing and matching data ranges to
maneuvers.

The flight maneuver automation framework was initially demonstrated using software-in-the-loop simulation in the
uavEE. A comparison between automated and manually-piloted flight was performed for testing stall using the full-scale
Cessna 172 under ideal (still atmosphere) conditions in the X-Plane 11 Flight Simulatora; this can be seen in Figure
16–19. In those time histories, the difficulty exhibited by the trained human pilot in simultaneously controlling the
aircraft altitude and roll and heading angles can be seen. In comparison, the time history of autonomously controlled stall
speed maneuver show smooth and accurate results. The flight maneuver automation framework was then demonstrated
on the Avistar UAV testbed aircraft and subsequently used to collect an aircraft dataset. Due to limited calm weather
day opportunities, only a subset of the maneuvers developed were flown, which include stall speed, stall polar, idle
descent, singlets, and doublets. The complete resulting data set of flight testing maneuvers can be viewed in related
work21 and can be downloaded from our UAV Database Site.34

0

20

40

60

80

100

120

0

z
(m

)

140

100

200

300

400

x (m)

500

600

700

800

900

1000

y (m)

20
0

Figure 16. Trajectory plot of a stall speed maneuver performed by manual piloting (the aircraft is drawn once every 1.0 s).

0

50

100

0

z
(m

)

150

100

200

300

400

500

x (m)

600

700

800

900

1000

y (m)

0
-20

Figure 17. Trajectory plot of a stall speed maneuver performed by the flight maneuver automation framework (the aircraft is drawn once
every 1.0 s).

aThe manually-pilot aircraft was flown by a trained human pilot using a professional-grade simulator yoke system, throttle quadrant, and rudder
pedals. Both maneuvers were set up the same, with the aircraft flying at 40 m/s and oriented at a yaw angle of 0 deg (East).

16 of 24

American Institute of Aeronautics and Astronautics

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

0

20

40

60

80

100

120

140

160

180

200

P
os

iti
on

 (
m

)

Northing

Easting (1/10)

Altitude

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-60

-45

-30

-15

0

15

30

45

60

E
ul

er
 A

ng
le

 (
de

g)

 (Roll)

 (Pitch)

 (Heading)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-20

-15

-10

-5

0

5

10

15

20

A
cc

el
er

at
io

n
(m

/s
2)

x

y

z

Tot

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-45

-30

-15

0

15

30

45

R
ot

at
io

n
R

at
e

(d
eg

/s
)

p

q

r

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-40

-30

-20

-10

0

10

20

30

40

50

B
od

y
V

el
oc

ity
 (

m
/s

)

u

v

w

V

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

0

250

500

750

1000

1250

1500

1750

2000

P
ro

pe
lle

r
R

ot
at

io
n

R
at

e
(R

P
M

)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-20

-15

-10

-5

0

5

10

15

20

A
ng

le
 o

f A
tta

ck
 (

de
g)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-45

-30

-15

0

15

30

45

C
on

tr
ol

 D
ef

le
ct

io
n

(d
eg

)

Aileron

Elevator

Rudder

Figure 18. A time history of a stall speed maneuver performed by manual piloting.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

0

20

40

60

80

100

120

140

160

180

200

P
os

iti
on

 (
m

)

Northing

Easting (1/10)

Altitude

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-60

-45

-30

-15

0

15

30

45

60

E
ul

er
 A

ng
le

 (
de

g)

 (Roll)

 (Pitch)

 (Heading)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-20

-15

-10

-5

0

5

10

15

20

A
cc

el
er

at
io

n
(m

/s
2)

x

y

z

Tot

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-45

-30

-15

0

15

30

45

R
ot

at
io

n
R

at
e

(d
eg

/s
)

p

q

r

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-40

-30

-20

-10

0

10

20

30

40

50

B
od

y
V

el
oc

ity
 (

m
/s

)

u

v

w

V

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

0

250

500

750

1000

1250

1500

1750

2000

P
ro

pe
lle

r
R

ot
at

io
n

R
at

e
(R

P
M

)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-20

-15

-10

-5

0

5

10

15

20

A
ng

le
 o

f A
tta

ck
 (

de
g)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Time (s)

-45

-30

-15

0

15

30

45

C
on

tr
ol

 D
ef

le
ct

io
n

(d
eg

)

Aileron

Elevator

Rudder

Figure 19. A time history of a stall speed maneuver performed by the maneuver automator.

17
of24

A
m

erican
Institute

ofA
eronautics

and
A

stronautics

3. Geo-Fencing Algorithm

To enable safe interactions among the surrounding humans, environments, and other aircraft, UAVs have to be
constrained to designated areas or spaces. For rotary aircraft, such as quadcopters, the task of enforcing the geo-fence is
relatively simple since those type of aircraft are capable of stopping in mid-air and turning around with zero translational
velocity. However, for fixed-wing aircraft, such execution of maneuvers is impossible as they need to maintain a
minimum velocity in order to stay airborne. Consequently, a precise kinematic model for fixed-wing aircraft is required
to determine the feasibility of a trajectory as well as the exact time for the initiation of an evasion maneuver. Most
analytical kinematic models only constrain the maximum curvature of a trajectory, namely a Dubin’s Curve.35, 36 These
fixed-wing aircraft geo-fencing algorithms37, 38 argue that the trajectories for a fixed-wing aircraft form a symmetric fan
pattern around the velocity vector. This fan pattern, however, is based on the instantaneous change in roll, which was
shown to not be applicable for fixed-wing aircraft.

Therefore, a precise kinematic model, the Beta-Trajectory, was developed for trajectory prediction and evasive
maneuvering.7 The Beta-Trajectory implements a kinematic model for fixed-wing aircraft where roll is governed by
constrained roll rates, yielding Beta-Curves. The algorithm then uses the results of the model to avoid boundaries and
stay in a designated area. The full derivation of the Beta-Trajectory can be found in this technical report.16 In order to
evaluate the proposed geo-fencing system, the Beta-Trajectory was implemented into uavAP using the flight maneuver
automation framework, tested in uavEE, and then subsequently tested in real flights using the Avistar UAV. Figure 20
shows the performance of the Beta-Trajectory geo-fencing algorithm in real flights.

−300 −200 −100 0 100 200 300

Distance X [m]

−300

−200

−100

0

100

200

300

D
is

ta
n

ce
Y

[m
]

1

2

3

4

Flight

Takeoff and Landing

Evasive Maneuver

Figure 20. The real-life flight path of the Avistar UAV deployed with the uavAP autopilot with geo-fencing; red shows the geo-fence, blue
shows the evasive maneuvers labeled from 1-4 (note that the boundary slack value is 5 meters and velocity is 20 m/s).

18 of 24

American Institute of Aeronautics and Astronautics

C. UIUC-TUM Solar Flyer

The UIUC-TUM Solar Flyer, which is shown in Figure 21, is a long-endurance, solar-powered unmanned aircraft
currently in development to enable computationally-intensive flight that could support real-time data processing for
a wide range of applications.39 The aircraft is a highly-optimized, fixed-wing design that was assembled from only
commercial-off-the-shelf (COTS) components and operates a narrow range of airspeeds in order to achieve highly-
efficient flight. The aircraft has been instrumented with a custom Al Volo flight control and data acquisition system that
integrates the uavAP autopilot, which has been adapted for the demanding requirements dictated by the aircraft and its
flight profile.

Due to the low operating airspeed of the sailplane design, the aircraft is very susceptible to atmospheric turbulence
and wind. Therefore it was crucial to integrate a responsive wind estimator and airspeed controller into uavAP. Among
other flight testing recently performed, the UIUC-TUM Solar Flyer was autonomously flown using uavAP to measure
the aircraft’s power consumption,40 which is crucial for modeling the aircraft. Additionally, in order to verify the
aircraft’s ability to maintain a precise flight path under varying flight conditions, the aircraft was flight tested using
uavAP in various amounts of wind, up to the aircraft’s typical cruise speed (note that the aircraft maximum speed is
greater than cruise). Figure 22 shows the resulting trajectory, of the UIUC-TUM Solar Flyer attempting to maintain a
repeated level race track maneuver under varying wind conditions, which would be sufficient to accomplish a typical
mission profile, e.g. equivalent zig-zagged racetrack coverage profile over a field.

Figure 21. The UIUC-TUM Solar Flyer aircraft shown with solar arrays.

Figure 22. The trajectory of the UIUC-TUM Solar Flyer during a repeated level race track maneuver (note that the aircraft is plotted 6x
scale every 0.5 sec).

19 of 24

American Institute of Aeronautics and Astronautics

VI. Related Autopilots

In this section, a comparison between uavAP and other openly available autopilot implementations is performed.
The control stacks and software framework of Ardupilot, Paparazzi and PX4 are examined.

A. Ardupilot

Ardupilot is an open source software suite first establised in 2009. It is not tied to a specific set of hardware but rather, it
is firmware capable of running on various embedded platforms.41 Nevertheless, fully packaged autopilots with hardware
and software, such as the The ArduPilot Mega (APM) based off the Arduino Mega, exist for convenience. APM has
inspired many derivatives, such as FlyMaple.42, 43 Ardupilot’s runtime stack is organized hierarchically as follows. The
lowest layer is the hardware level, consisting of external sensors, open hardware standards such as Pixhawk,44 controller
chips such as the Mateksys F40545 or Navio2, and complete drones such as the Bebop2.46 The next level is the OS
layer, which consists of OSs like ChibiOS, BusyBox Linux and Linux.41 Ardupilot itself then runs above the OS layer.
The flight code is further segmented into 3 layers, the hardware abstraction layer, shared libraries, and vehicle specific
flight code. The hardware abstraction layer allows ArduPilot to be portable and platform agnostic. Shared libraries exist
for the supported four vehicle types: Copter, Plane, Rover and AntennaTracker. The communication layer resides above
the flight layer and communication is done via devices implementing the MAVLink protocol. In addition to these core
autopilot modules, Ardupilot’s codebase also has miscellaneous support tools. The highest layer of the runtime stack is
the UI/API layer, which consists of the Ground Station and any DroneKit applications and their corresponding hosts.41

In terms of software design, Ardupilot is focused on reliably going from one waypoint to another. Ardupilot provides a
reliable trajectory planner to travel between waypoints and assumes the average user is not interested in modifying the
trajectory planner or other critical features. uavAP allows users to modify the trajectory planner, scheduler, inter device
communication, and various other low level features if they so desire. This modularity allows users to implement more
complex solutions ranging from low level to high level. Thus, uavAP is more geared towards being a testbed for various
state-of-the-art research implementations.

uavAP’s runtime stack is comparable to Ardupilot’s. At the hardware layer, uavAP uses Al Volo libraries to
communicate with sensors and data acquisition systems but can be extended to other platforms. One noteworthy
difference is that below the hardware level, uavAP can also be configured to take actuation and flight data from real
flights or emulated/replayed flight conditions in uavEE. uavEE is then capable of performing both SITL (Software in the
Loop) and HITL (Hardware in the Loop) Simulation, with flight simulators such as X-Plane 11. Conversely, Ardupilot
has its own SITL (Software In The Loop) simulation framework and simulator. It is a build of the autopilot using any
C++ compiler, and thus allows the autopilot to be tested without hardware. Ardupilot’s SITL Simulator can also be
used with a wide variety of 3rd party simulators, such as Gazebo, XPlane-10, RealFlight, Morse, Replay, JSBSIM,
AirSim, Silent Wings Soaring, Last Letter, CRRCSim, or SCRIMMAGE. Hardware In The Loop Simulation is currently
only supported for planes in X-Plane and FlightGear.41 While Ardupilot’s SITL necessitates manual connections from
the autopilot executable to the ground control station, physics and flight simulators, and proxy telemetry if multiple
ground control stations are desired, uavAP uses the uavEE system to handle all inter-agent communication associated
with HITL/SITL simulation. Ardupilot’s fixed wing operating modes are comparable to uavAP. Ardupilot has various
different flight modes, ranging from full manual control of aircraft control surfaces, to roll and pitch override, to circling
a point, to following a mission. In AUTO mode, where the autopilot flies a mission, Ardupilot’s framework allows the
ground station to update the mission.41 Conversely in uavAP, manual flight is not supported by default. In the interest
of autonomy, the mission is preconfigured ahead of the flight.

20 of 24

American Institute of Aeronautics and Astronautics

B. Paparazzi

Paparazzi UAV is another open-source project encompassing both the hardware and software aspects of UAV systems.
As per their website, they support more target platforms than Ardupilot.47 One example of a pre-built board running
the autopilot software is the STM based Chimera board.42, 43, 47 Paparazzi’s usage flow is as follows. The autopilot is
configurable by an XML, where the flight mode state machine is defined, along with aircraft modules, additional header
files, ground control settings, and exceptions. The specified firmware is then built and cross-compiled for that target
aircraft hardware, and uploaded to the embedded board. Paparazzi has a wide array of modules for performing tasks
such as reading external sensors or controlling cameras. The default features for fixed wing aircraft are the following:
manual control via an RC transmitter, RC receiver, servo and motor control, control with augmented stability (AUTO1),
autonomous navigation (AUTO2), and communication to and from the ground station. Autonomous navigation includes
features like waypoint navigation, segment and circle navigation, takeoff and landing, and advanced fail-safe planning
(e.g. geo-fencing).47 Its configurable state machine nature also allows high flexibility and complexity in algorithm
design for control, communication and other custom features. In comparison, uavAP provides a concrete control stack
with defined roles, with the goal of minimizing complexity associated with changing autopilot functionality.

The system communication flow is as follows. When configured for real flight, the aircraft communicates over a
wireless link to a ground network, which then sends the data to a server that logs, distributes, and pre-processes the
messages for the ground control station and other ground agents. When configured for simulated flight, the hardware
communication link is replaced with a SITL simulator that simulates actuation and radio communication. A Gaia agent
then allows the user to set environmental variables such as windspeed and direction, sensor failure, and flight simulation
speed. Paparazzi has two built in simulators, sim and nps (New Paparazzi Simulator). It also supports the Gazebo
simulator.47 In comparison to uavAP, uavAP sends sensor data and receives ground commands in real flight over a
radio link to a uavEE environment with radio communication and ground station nodes. In simulated flight, sensor data
from the flight simulator is sent over a simulated serial link to uavAP and processed with the same API. Environmental
factors such as wind can be configured in the flight simulator (currently X-Plane 11). All simulated sensor data can be
corrupted to simulate sensor fault, and all communication between simulation peripherals (i.e. flight simulator, power
modeller, sensor fault modeller) is handled by the ROS environment uavEE is built on.

C. PX4

PX4 is another open source autopilot for drones and other unmanned aerial vehicles focused on support for a broad
category of aerial vehicles, sensors and control hardware, and safe flight modes. It comes with a ground station called
QGroundControl, supports PixHawk hardware, and uses the MAVSDK library for communication with companion
devices using the MAVLink protocol.48 Various embedded boards are designed to use the PX4 autopilot, such as
PIXHAWK, Pixfalcon, and PixRacer.42, 43 PX4 is split into a flight stack layer and middleware layer. The flight stack
layer is responsible for all flight control tasks, such as guidance, navigation, control algorithms, and reading sensors.
The workflow inside the flight stack is as follows. An estimator feeds a state estimate to a controller, which produces a
command, and a mixer translates them to motor commands. This layer is vehicle specific and depends on factors such
as the aircraft’s motor arrangements and rotational inertia. PX4 uses a state machine in the flight controller to select a
flight controller based on the level of flight autonomy desired.48 The middleware layer handles communication with the
external world and it includes device drivers for embedded sensors and communication with companion computers,
ground control stations, etc. Similar to Ardupilot, PX4 provides broad community support and is focused on simple and
reliable flight control. Thus, PX4 focuses on providing robust semi-autonomous flight (e.g. pitch and roll controlled by
the autopilot but yaw manually controlled by RC stick) and autonomous waypoint following and assumes the average
user is not interested in modifying the trajectory planner or other critical underlying features. In contrast, uavAP’s

21 of 24

American Institute of Aeronautics and Astronautics

modular framework is designed to allow modifications to any underlying feature, making it more suitable to be a testbed
for various state-of-the-art research implementations.

In addition, PX4 can be interfaced to run on a computer modeled vehicle in a simulated flight world. Currently
for fixed wing aircraft, PX4 supports the Gazebo simulator for SITL and HITL and X-Plane for HITL only. When
doing SITL simulation, PX4 communicates with offboard APIs, the ground control station and the simulator over
the MAVLink protocol on UDP. Faster than real-time and lockstep simulation is also supported, as well as joystick
integration, sensor failure, and camera simulation.48 When uavAP communicates with uavEE and vice versa in SITL,
HITL and real flight, point to point serial communication with CRC is used. Faster than real-time simulation playback
is also supported in the uavEE environment via ROS-bags (saved flight data) and accelerated X-Plane simulation speed.

VII. Conclusion and Future Work

This work presented uavAP, a modular autopilot for UAVs, providing some details of its control stack implementation
as well as applications. uavAP has been used in past research for the design of an accurate UAV power model, a flight
maneuver automation framework, and an accurate kinematic model and algorithm for fixed-wing aircraft geo-fencing.
Its core, cpsCore, is the C++ object-oriented backbone, used for module management such as configuration, aggregation,
and synchronization. In essence, uavAP is a collection of modules merged together using cpsCore to form a flexible
and distributed autopilot framework for UAVs.

In future work, uavAP will be applied to a broad range of research directions. The critical computation path of flight
control provides a challenge for real-time system management, especially when parallelizing it with data-intensive
vision computation. Providing real-time guarantees requires complex software isolation techniques, which can be
implemented and tested in uavAP. Further work can be conducted with planning and control algorithms, branching out
into trajectory optimization or power-optimal flight using techniques of artificial intelligence. While expanding the
system to intelligent, unpredictable algorithms, a pairing of those algorithms with reliable, less complex algorithms
might be essential. This architectural challenge can easily be addressed with uavAP, in which the intelligent algorithm
can even be isolated as its own process. Another branch of research with the need for modularity and flexibility is the
area of multi-agent systems, specifically multi-agent UAVs. In this field, uavAP can be used to facilitate the testing and
development of various communication schemes, consensus algorithms, or even multi-agent reinforcement learning. As
it is an open-source project, uavAP aims to expand into more research communities, with the goal to be a testbed of
state-of-the-art research.

Acknowledgments

The material presented in this paper is based upon work supported by the National Science Foundation (NSF)
under grant number CNS-1646383. Marco Caccamo was also supported by an Alexander von Humboldt Professorship
endowed by the German Federal Ministry of Education and Research. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the
NSF.

References

1Mirco Theile, “uavAP: A Modular Autopilot for Unmanned Aerial Vehicles,” https://github.com/theilem/uavAP, Accessed May 2020.
2Al Volo LLC, “Al Volo: Flight Data Acquisition Systems,” http://www.alvolo.us.
3Mirco Theile, “uavEE: A Modular Emulation Environment for Rapid Development and Testing of Unmanned Aerial Vehicles,”

https://github.com/theilem/uavEE, Accessed May 2020.
4Theile, M., Dantsker, O. D., Nai, R., and Caccamo, M., “uavEE: A modular, power-aware emulation environment for rapid prototyping and

testing of uavs,” 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), IEEE, 2018,
pp. 217–224.

22 of 24

American Institute of Aeronautics and Astronautics

5Yu, S., Flight Maneuver Automation for System Analysis of Small Fixed-Wing UAVs, Bachelor’s thesis, University of Illinois at Urbana-
Champaign, Department of Electrical and Computer Engineering, Urbana, IL, 2019.

6Dantsker, O. D., Yu, S., Vahora, M., and Caccamo, M., “Flight Testing Automation to Parameterize Unmanned Aircraft Dynamics,” AIAA
Paper 2019-3230, AIAA Aviation and Aeronautics Forum and Exposition, Dallas, Texas, June 2019.

7Theile, M., Yu, S., Dantsker, O. D., and Caccamo, M., “Trajectory Estimation for Geo-Fencing Applications on Small-Size Fixed-Wing
UAVs,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 1971–1977.

8Twigg, C., “Catmull-rom splines,” Computer, Vol. 41, No. 6, 2003, pp. 4–6.
9Mirco Theile, “Modular C++ Framework for Cyber-Physical Systems,” https://github.com/theilem/cpsCore, Accessed May 2020.

10Redislabs, “Redis,” https://redis.io/, Accessed May 2020.
11Dantsker, O. D., Ananda, G. K., and Selig, M. S., “GA-USTAR Phase 1: Development and Flight Testing of the Baseline Upset and Stall

Research Aircraft,” AIAA Paper 2017-4078, AIAA Applied Aerodynamics Conference, Denver, Colorado, June 2017.
12Regan, C. D. and Taylor, B. R., “mAEWing1: Design, Build, Test - Invited,” AIAA Paper 2016-1747, AIAA Atmospheric Flight Mechanics

Conference, San Diego, California, Jun. 2016.
13Bunge, R. A., Alkurdi, A. E., Alfaris, E., and Kroo, I. M., “In-Flight Measurement of Wing Surface Pressures on a Small-Scale UAV During

Stall/Spin Maneuvers,” AIAA Paper 2016-3652, AIAA Flight Testing Conference, Washington, D.C., Jun. 2016.
14Bunge, R. A., Savino, F. M., and Kroo, I. M., “Approaches to Automatic Stall/Spin Detection Based on Small-Scale UAV Flight Testing,”

AIAA Paper 2015-2235, AIAA Atmospheric Flight Mechanics Conference, Dallas, Texas, Jun. 2015.
15Ragheb, A. M., Dantsker, O. D., and Selig, M. S., “Stall/Spin Flight Testing with a Subscale Aerobatic Aircraft,” AIAA Paper 2013-2806,

AIAA Applied Aerodynamics Conference, San Diego, CA, June 2013.
16M. Theile and S. Yu, “Kinematic Model for Fixed-Wing Aircraft with Constrained Roll-Rate,” Tech. rep., University of Illinois at Urbana-

Champaign, Department of Computer Science, Sep. 2018.
17Mancuso, R., Dantsker, O. D., Caccamo, M., and Selig, M. S., “A low-power architecture for high frequency sensor acquisition in many-DOF

UAVs,” 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), IEEE, 2014, pp. 103–114.
18Dantsker, O. D., Loius, A. V., Mancuso, R., Caccamo, M., and Selig, M. S., “SDAC-UAS: A Sensor Data Acquisition Unmanned Aerial

System for Flight Control and Aerodynamic Data Collection,” AIAA Infotech@Aerospace Conference, Kissimee, Florida, Jan 2015..
19Dantsker, O. D., Theile, M., and Caccamo, M., “A High-Fidelity, Low-Order Propulsion Power Model for Fixed-Wing Electric Unmanned

Aircraft,” AIAA Paper 2018-5009, AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, OH, July 2018.
20Dantsker, O. D., Imtiaz, S., and Caccamo, M., “Electric Propulsion System Optimization for a Long-Endurance and Solar-Powered Unmanned

Aircraft,” AIAA Paper 2019-4486, AIAA/IEEE Electric Aircraft Technology Symposium, Indianapolis, Indiana, Aug. 2019.
21Dantsker, O. D., Caccamo, M., Theile, M., and Mancuso, R., “Flight & Ground Testing Data Set for an Unmanned Aircraft: Great Planes

Avistar Elite,” AIAA Paper 2020-0780, AIAA SciTech Forum, Orlando, Florida, Jan 2020.
22Dantsker, O. D., Mancuso, R., Selig, M. S., and Caccamo, M., “High-Frequency Sensor Data Acquisition System (SDAC) for Flight Control

and Aerodynamic Data Collection,” 32nd AIAA Applied Aerodynamics Conference, 2014, p. 2565.
23Lee, J. S. and Yu, K. H., “Optimal Path Planning of Solar-Powered UAV Using Gravitational Potential Energy,” IEEE Transactions on

Aerospace and Electronic Systems, Vol. 53, No. 3, June 2017, pp. 1442–1451.
24Grano-Romero, C., Garcı́a-Juárez, M., Guerrero-Castellanos, J. F., Guerrero-Sánchez, W. F., Ambrosio-Lázaro, R. C., and Mino-Aguilar,

G., “Modeling and control of a fixed-wing UAV powered by solar energy: An electric array reconfiguration approach,” 2016 13th International
Conference on Power Electronics (CIEP), June 2016, pp. 52–57.

25Hosseini, S., Dai, R., and Mesbahi, M., “Optimal path planning and power allocation for a long endurance solar-powered UAV,” 2013
American Control Conference, June 2013, pp. 2588–2593.

26Karabetsky, D., “Solar rechargeable airplane: Power system optimization,” 2016 4th International Conference on Methods and Systems of
Navigation and Motion Control (MSNMC), Oct 2016, pp. 218–220.

27Lindahl, P., Moog, E., and Shaw, S. R., “Simulation, Design, and Validation of an UAV SOFC Propulsion System,” IEEE Transactions on
Aerospace and Electronic Systems, Vol. 48, No. 3, JULY 2012, pp. 2582–2593.

28Bradt, J. B. and Selig, M. S., “Propeller Performance Data at Low Reynolds Numbers,” AIAA Paper 2011-1255, AIAA Aerospace Sciences
Meeting, Orlando, Florida, Jan. 2011.

29Canin, D. G., McConnell, J. K., and James, P. W., “F-35 High Angle of AttackFlight Control Development and Flight Test Results,” AIAA
Paper 2019-3227, AIAA Aviation and Aeronautics Forum and Exposition, Dallas, Texas, June 2019.

30Morelli, E., “Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs,” AIAA Paper 1997-3711, AIAA
Atmospheric Flight Mechanics Conference, New Orleans, Louisiana, Aug. 1997.

31Sobron, A., On Subscale Flight Testing: Applications in Aircraft Conceptual Design, Ph.D. thesis, Linkoping University, Department of
Management and Engineering, Linkoping, Sweden, 2018.

32Grauer, J. A. and Boucher, M., “Aircraft System Identification from Multisine Inputs and Frequency Responses,” AIAA Paper 2020-0287,
AIAA SciTech Forum, Orlando, Florida, Jan. 2020.

33Kimberlin, R. D., Flight Testing of Fixed-Wing Aircraft, AIAA Education Series, AIAA, Reston, VA, 2003.
34O. D. Dantsker and R. Mancuso and M. Vahora and M. Caccamo, “Unmanned Aerial Vehicle Database,” http://www.uavdb.org.
35Dubins, L. E., “On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and

Tangents,” American Journal of Mathematics, Vol. 79, No. 3, 1957, pp. 497–516.
36Lugo-Cárdenas, I., Flores, G., Salazar, S., and Lozano, R., “Dubins path generation for a fixed wing UAV,” 2014 International Conference on

Unmanned Aircraft Systems (ICUAS), May 2014, pp. 339–346.
37Gurriet, T. and Ciarletta, L., “Towards a generic and modular geofencing strategy for civilian UAVs,” 2016 International Conference on

Unmanned Aircraft Systems (ICUAS), June 2016, pp. 540–549.
38Dill, E. T., Young, S. D., and Hayhurst, K. J., “SAFEGUARD: An assured safety net technology for UAS,” 2016 IEEE/AIAA 35th Digital

Avionics Systems Conference (DASC), Sept 2016, pp. 1–10.

23 of 24

American Institute of Aeronautics and Astronautics

39Dantsker, O. D., Theile, M., Caccamo, M., and Mancuso, R., “Design, Development, and Initial Testing of a Computationally-Intensive,
Long-Endurance Solar-Powered Unmanned Aircraft,” AIAA Paper 2018-4217, AIAA Applied Aerodynamics Conference, Atlanta, Georgia, Jun.
2018.

40Dantsker, O. D., Theile, M., Caccamo, M., Yu, S., Vahora, M., and Mancuso, R., “Continued Development and Flight Testing of a Long-
Endurance Solar-Powered Unmanned Aircraft: UIUC-TUM Solar Flyer,” AIAA Paper 2020-0781, AIAA Scitech 2020 Forum, Orlando, Florida, Jan
2020.

41“Ardupilot Autopilot suite,” http://ardupilot.org, 2019.
42Ebeid, E., Skriver, M., and Jin, J., “A survey on open-source flight control platforms of unmanned aerial vehicle,” 2017 Euromicro Conference

on Digital System Design (DSD), IEEE, 2017, pp. 396–402.
43Ebeid, E., Skriver, M., Terkildsen, K. H., Jensen, K., and Schultz, U. P., “A survey of open-source UAV flight controllers and flight simulators,”

Microprocessors and Microsystems, Vol. 61, 2018, pp. 11–20.
44“pixhawk — The Hardware Standard for Open Source Autopilots,” https://pixhawk.org/.
45“Matek Systems,” http://www.mateksys.com/.
46“Parrot Bepop 2 FPV Drone,” https://www.parrot.com/global/drones/parrot-bebop-2-fpv.
47http://wiki.paparazziuav.org/wiki/Overview, 2018.
48“PX4 Documentation,” https://docs.px4.io/, 2020.

24 of 24

American Institute of Aeronautics and Astronautics

