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Abstract

UAVs face unique constraints in autonomous operation, including limited mass, power, and possible unreliable
communication under degraded telemetry relay conditions. These challenges necessitate stable onboard
inference, as off-board compute becomes undependable during real-time flight. In this work, we assess the
viability of lightweight, Neural Processing Unit (NPU)-equipped single-board computers (SBCs) for onboard
object detection and control and propose a configurable system design adaptable to a range of UAV types,
including lightweight, high-speed, maneuverable platforms. We benchmark CPU-only and NPU-accelerated
SBCs-specifically the Raspberry Pi Zero 2W and the Rockchip-based Radxa ZERO 3W and Khadas Edge 2,
respectively—through stress tests to evaluate inference latency consistency. Following that, we present an onboard
perception pipeline using a YOLOv8-nano model with minimal off-board telemetry. Our results demonstrate
that modern NPUs sustain reliable real-time inference and control under the physical and environmental
limitations of lighter-than-air UAVs, enabling robust autonomy without dependence on high-bandwidth ground
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links.
Nomenclature

DTR = Defend the Republic competition
FLOP = Floating-Point Operations Per Second
GFLOP = Billion Floating-Point Operations Per Second
LTA = Lighter-Than-Air
SBC = Single Board Computer
UAV = Unmanned Aerial Vehicle
YOLO = You Only Look Once
NPU = Neural Processing Unit
cv = Coefficient Variance
SoC = System-on-a-Chip
Ps0 = 50th percentile of inference latency
P95 = 95th percentile of inference latency
D9s = 99th percentile of inference latency
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I. Introduction

Unmanned Aerial Vehicles (UAVs) are increasingly deployed across a wide spectrum of applications, including
precision agriculture, industrial inspection, environmental surveillance, and disaster response. As these mission profiles
grow in complexity, UAV systems must support real-time obstacle avoidance, sustained flight, and autonomous decision-
making—all without relying on constant human supervision. Achieving such independence is especially challenging in
environments that are adversarial, highly dynamic, and bound by limited onboard computation. Under those conditions,
traditional methods that rely on GPS waypoint-based navigation, manual piloting, and reliable wireless communications
become less viable.

Observing strict limits on mass, power, and processing capability, the Defend the Republic (DTR) collegiate
competition serves as a rigorous testbed for these challenges. Participating teams design and test lighter-than-air
(LTA) UAVs that must autonomously locate, collect, and deliver neutrally buoyant mylar balloons to various goal
targets. Success is measured by the number of goals scored, highlighting critical research problems in aerial autonomy
applicable not only to LTA UAVs but also to many lightweight and highly maneuverable aerial vehicles.

To address these constraints, LTA systems typically incorporate basic sensing tools such as IMUs, barometers,
ultrasonic sensors, and cameras .!"!! Early approaches employed simple vision algorithms (e.g., color-based blob
detection), but these have proven inadequate under dynamic lighting and cluttered environments. Advanced techniques
leveraging machine learning deliver greater robustness and accuracy, but their high computational demands have
traditionally exceeded the capabilities of small embedded platforms. Server-based approaches that offload computation
remotely'? introduce reliability concerns. Because the entire system becomes dependent on an external connection,
systems may fail under challenging environmental conditions.'?

Recent advances in hardware acceleration, particularly the emergence of compact Neural Processing Units (NPUs)—
specialized microprocessors that accelerate deep neural network inference with high energy efficiency—are beginning to
shift this paradigm.'* Such developments enable low-power embedded devices to execute real-time object detection
directly onboard, facilitating true autonomous operation in edge-constrained environments.

This paper presents a fully onboard autonomy solution specifically designed for lighter-than-air UAVs, based on a
systematic evaluation of single-board computers (SBCs) ranging from CPU-only baselines to NPU-accelerated platforms.
Each board was benchmarked to determine inference latency, stability, and thermal behavior under representative vision
workloads to identify the optimal balance of performance and board mass. Leveraging the selected NPU platform,
a YOLOvS8-nano object detection model processes camera inputs, which are fused with sensor data in real-time to
drive low-level flight controls, entirely eliminating dependency on off-board servers. The resulting system significantly
reduces inference latency down to 17 ms on the strongest NPU platform, and by 60 ms on the platform chosen based
on LTA UAV constraints. This ensures reliable performance, even in environments with limited connectivity. By
co-locating vision processing, sensor fusion, and control on a single embedded platform, the design cuts out any reliance
on remote servers or communication links, paving the way for deployment in high-speed fixed-wing, agile rotary-wing,
multi-rotor, and hybrid UAVs operating under tight size, weight, and power constraints.

The rest of this paper is organized as follows. Section II provides background on the DTR competition, vehicle
constraints, and related research that motivates this work. Then Section III outlines the methodology used to benchmark
and analyze the SBCs. Next, Section IV provides an analysis of the SBCs’ inference latency, stability, and thermal
behavior, highlighting their interdependence. Afterwards, Section V details the implementation of our onboard
computing system based on the findings from Section IV. Finally, Section VI summarizes our contributions and outlines
directions for future work.
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II. Background

A. DTR Overview and Constraints

At the Defend The Republic (DTR) competition,'-1© collegiate teams field autonomous lighter-than-air vehicle (LTA)
vehicles (i.e., autonomous blimps) in a Robotic Quidditch-style match to autonomously capture helium balloons and
score them into the opponent’s goals. Fig. 1 shows an example of the Indiana University’s LTA vehicles navigating
the game space during a DTR match. Specifically, the goal is for the autonomous LTA vehicles to autonomously
capture green and purple helium balloons and score them into the opponent’s fluorescent yellow or orange goals. The
scope of the challenge includes the physical architecture, sensor payload and design, software implementation, and
cyber-physical development of the entire system.

Each game consists of two 30 minute halves, subdivided into intervals of manual and fully autonomous flight.
Points are awarded to reward autonomy: manual scoring yields 1 pt, autonomous scoring with manual assistance 3 pts,
and uninterrupted autonomy 10 pts—strongly incentivizing autonomy. The playing field consists of two sets of three
retro-reflective plywood goals—one circle (36.5 in interior, 44.5 in exterior diameter), one square (38 in inside leg, 46
in outside), and one inverted equilateral triangle (55 in height)—are suspended from the ceiling at each end of the field
in alternating yellow and orange. Fig. 2 shows a 2D birds-eye view of this arrangement.

Each LTA must follow a strict set of rules, constraining helium usage, overall weight, and capture mechanisms.
The team is allotted 200 cubic feet of helium to inflate their entire fleet for the week. Each vehicle while at rest must
weigh no more than 100 grams, including helium, which may not be more than 50 cubic feet. Since designs are
constrained by total buoyancy, this limits complexity, sensing capabilities, and overall computational power. Typical
implementations include camera-based computer vision navigation with brushless motor propulsion. Basic nets are used
for ball capturing and mylar balloons with helium provide the lift for the vehicles. Therefore, due to the limited weight
budget, optimal design of an LTA vehicle requires careful optimization of all subsystems of a vehicle, i.e. structure,
propulsion,!” and computation.

Figure 1: LTA vehicles navigating the game space during an autonomous period.
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Figure 2: Birds-eye view of the DTR match layout.

B. Indiana University LTA UAV Design and Constraints

To establish clear benchmarks and system constraints, we utilized the Indiana University team’s scoring LTA UAV,
named “Maverick®, as our baseline vehicle.® Maverick, which is shown in Fig 3, uses a composite structure consisting
of four helium-filled balloons mounted atop a lightweight frame, which houses essential hardware components such
as motors, propellers, and the onboard computing platform. The propulsion system, consisting of 4 brushless motors
attached directly to the frame, enables precise maneuverability within the advesarial competition environment.

The real-time control demands of Maverick impose strict latency requirements on the onboard computational
resources. Experimentally, we identified a minimum viable flight control rate of 10 Hz, corresponding to a maximum
acceptable latency of 100 ms per inference and control cycle. This threshold ensures responsive and stable vehicle
dynamics, crucial for accurate navigation and successful target engagement during competition scoring tasks.

The baseline architecture of Maverick integrated a Raspberry Pi Zero 2 W single-board computer (SBC), as depicted
in the hardware diagram® shown in Fig. 4. This SBC processes incoming data from a Raspberry Pi Camera Module and
a sensor array that includes an inertial measurement unit (IMU), barometer, and magnetometers. The processed sensor
fusion and visual data feed directly into the vehicle’s flight control algorithms.

In this effort, several candidate SBC platforms are benchmarked—including NPU-accelerated solutions—to assess
their suitability as drop-in replacements for the existing Raspberry Pi Zero 2 W, with the aim of achieving consistent
onboard inference times within the critical 100 ms latency constraint.

N

Figure 3: The IU Maverick vehicle shown scoring neutrally boyant goal balloons in a square goal.
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Figure 4: The hardware system diagram for the IU Maverick scoring vehicle.

C. Related Work

1. CPU+ GPU

Early demonstrations of airborne deep learning relied on general-purpose CPU + GPU system-on-modules, such as
the NVIDIA Jetson family. These boards inherit mature software stacks, including CUDA, TensorRT, and ROS 2,
which makes it easy to port laboratory vision pipelines to mobile robots.!»> However, their combined mass, power
consumption, heat output, and airflow requirements exceed the tight weight, energy, and cooling budgets of lightweight
multirotors and buoyant platforms.'® Consequently, control loops that appear stable on a test bench may experience
latency spikes or throttling during flight, revealing a persistent discrepancy between algorithmic feasibility and field
reliability.

2. Offboard Computation

To overcome these power, heat, and weight issues, many researchers stream camera frames to ground station graphics
processing units (GPUs), perform inference off-board, and transmit action commands back to the vehicle via Wi-Fi.!?
While this split-compute scheme is effective under ideal channel conditions, it unravels as soon as bandwidth fluctuates
or packets drop. Even modest jitter can desynchronize perception and control, forcing operators to widen safety margins
or relinquish autonomy. In short, off-board inference remains unreliable whenever the wireless channel departs from its
best-case scenario.

Sof12

American Institute of Aeronautics and Astronautics



Downloaded by 129.79.197.114 on August 21, 2025 | http://arc.aiaa.org | DOI: 10.2514/6.2025-3546

3. NPU

Recent single-board computers equipped with dedicated neural processing units, such as the Rockchip RK3566/RK3588,
now deliver several tera-operations per second within a sub-3 W budget.'* By shifting the heaviest convolutional
layers onto specialized silicon, these platforms reduce power consumption and latency variance. This allows quantized
networks, such as YOLOvVS8-Nano, to run at real-time frame rates without active cooling [8]. Consequently, NPUs offer
a practical middle ground; they preserve onboard autonomy, even when links degrade, yet they stay within the strict
mass and energy constraints that previously drove researchers toward offloading. Our study builds on this trend by
evaluating NPU-based vision systems under the same flight dynamics that compromise CPU and off-board alternatives.
This approach closes the loop between algorithm design and deployable reliability.

III. Methodology

Building on the reliability concerns outlined in Section II, we investigate whether the frame rates reported in recent
embedded-AlI studies'* remain stable when the same processor must also shoulder navigation, logging, and encryption
workloads in flight. To focus squarely on the compute substrate, the camera, IMU, radio, and cooling system are held
constant. Only two variables are manipulated:

(i) CPU-load profiles that emulate concurrent avionics tasks, and

(i1) the input-image resolution, which trades receptive-field detail against inference latency.

All other factors (detector weights, ambient temperature, and airflow) remain identical, so any performance
differences can be attributed directly to the processor under test.

A. DTR Constraints

Based on control rate constraints stated in Section II, maximum round-trip delay for usable real-time control is 100 ms
under Defend the Republic (DTR) field conditions.!?> An on-board computer therefore qualifies for lighter-than-air
autonomy when, during a representative 60 s flight, it meets both criteria:

(1) pos inference latency < 100ms;!2 The 95th percentile latency ( pos) is the value at which 95% of the latency
values are less than or equal to that number. The same applies to ps5p and pgg, each being the value where 50% of
the values are less than psg and 99% of the values are less than pgg.

(i1) inference latency CV < 10 % The coefficient of variation (CV) is defined as the ratio of the standard deviation to
the mean inference latency, quantifying latency consistency and stability. A CV of < 10% ensures predictable
inference processing times, essential for precise and reliable control.

Together, these two metrics comprehensively assess both worst-case inference performance and overall stability,
establishing clear criteria for determining a system’s suitability for real-time autonomous operation in DTR flight
scenarios.

B. Boards Under Test

Table 1 summarizes the three SBCs evaluated in this study: a CPU-only baseline (Raspberry Pi Zero 2 W) and two
NPU-equipped alternatives (Radxa Zero 3W and Khadas Edge 2). Key specifications relevant to on-board perception
are reported, including CPU architecture, NPU TOPS, memory, size dimensions, and mass.

C. YOLOV8 Model Configuration

A YOLOv8-nano detector (~ 3M parameters) is fine-tuned on 3k balloon-and-goal images, achieving mAPg 5 = 0.92
and mAPy 5.0.95 = 0.70 at the native training resolution. For benchmarking, we captured a few thousand test images
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Table 1: Hardware characteristics of the evaluated SBCs.

Board CPU Cores NPU RAM  Size (mm) Mass (g)
Raspberry Pi Zero 2 W 4x Cortex-A53 @ 1.0 GHz - 512 MB 65x30 13
Radxa Zero 3W 4x Cortex-A55 @ 1.8 GHz RK3566 1 TOPS 2 GB 55x40 13
Khadas Edge 2 8x CortexB-A78AE @ 2.4 GHz RK3588 6 TOPS 8 GB 82x57 27

during real flights; each frame is letter-boxed to N x N pixels, with N € {256, 320, 640}, before being fed to the
network.

D. Stress-Test Design

To mimic in-flight compute pressure, we combine five CPU-load levels with three image resolutions. CPU load is
generated by worker threads that occupy 0 %, 25 %, 50 %, 75 %, or 100 % of a core, reflecting typical mixes of sensor
fusion and motor control. Input resolutions of 256, 320, and 640 pixels were selected to capture the trade-off between
small-object detectability and end-to-end latency. Among them, 256 pixels offers the lowest latency while preserving
just enough detail for real-time control. Higher resolutions, while improving object visibility, increase processing time
and thus compromise real-time responsiveness (real-time responsiveness defined in Section II). Table 2 outlines the
factors; the 5 x 3 combinations yield 15 distinct test conditions. Each resolution is swept across all CPU loads before
moving to the next.

Table 2: Stress-test factors and their levels.

Factor Levels Rationale

CPU load 0%, 25 %, 50 %, 75 %, 100 %  Simulates concurrent sensors and navigation workloads
Input size 256, 320, 640 px Small-feature vs. wide-context detection trade-off

IV. Results

Using the experimental protocol detailed in Section III, characterized per-frame latency, temporal stability, and
thermal behavior for the three single-board computers (SBCs) summarized in Table 1. Throughout the analysis, we held
two performance thresholds as stated in Section III A (pgs < 100ms, CV < 10%) for stable lighter-than-air (LTA) flight.

Figure 5 introduces the latency distribution of the CPU-only baseline, while Figure 6 contrasts the two NPU-
equipped boards Radxa Zero 3W and Khadas Edge 2. Table 3 gives percentile summaries, and Figures 7 and 8 show
how synthetic CPU load and input resolution affect mean latency and SoC temperature.

A. CPU-only baseline: Raspberry Pi Zero 2 W

Across all three input sizes, the Raspberry Pi never approaches either limit (i) or (ii). With 256 x 256-pixel images, the
median latency reaches 808 ms and the 95th percentile stretches to 1.5 s; enlarging the input to 640 x 640 pushes those
figures to between 4.3 s and 6.4 s (Figure 5). The spread is wide, with CV values falling between 38-47%, and Figure 7
shows the latency increases linearly with injected CPU load, exceeding 5 s when the flight computer is 50 % busy with
auxiliary tasks.

Although the board runs cool (50-56 C), Figure 8 reveals extreme thermal throttling: short boosts followed by idle
dips, producing the long-latency tail'® shown in Figure 5. Overall, the Pi violates both limits; an LTA UAV would
respond seconds late, inducing limit-cycle oscillations.
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a). Inference Latency on 640x640 image resolution

b). Inference Latency on 320x320 image resolution

c). Inference Latency on 256x256 image resolution
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Figure 5: CDF of inference latency on the Raspberry Pi Zero 2 W at three input resolutions.

B. Embedded NPUs: Radxa Zero 3W vs. Khadas Edge 2
1.  Nominal latency.

Khadas yields the lowest medians (17 ms at 256 x 256 and 20 ms at 320 x 320 (Figure 6)) well inside the 100 ms
control budget. At 640 x 640 its 99th percentile reaches 170 ms, breaching the stability limit. Radxa is slower, with
larger medians of 61 ms, 77 ms, and 227 ms for the three resolutions, yet still meets the < 100 ms criterion. Its tail is
shorter than that of Khadas at the same resolution, indicating more stable and predictable performance.

2. Temporal stability.

Latency on Radxa varies little, with CV values held between 67 % across all inputs and drifts only +6 ms over a 0-100
% CPU sweep (Figure 7). Khadas is three- to twelve-times spikier (CV = 54-76 %), and its pgs—pso gap widens as the
SoC warms (Figure 8).

3. Thermal margin.

Radxa completes every run near 55 C, which is well below its thermal-throttle threshold.?® It even registers a slightly
negative AT, indicating the NPU load is thermally invisible to the SoC. Khadas, by contrast, settles near 75 C and
indicated heavy thermal throttling, explaining the 120-170 ms outliers visible in Figure 6. This causes the Khadas to
require an additional weight budget for a heatsink in order to achieve maximum performance. Meanwhile, the Radxa
performs consistently without one.

4. Net effect on LTA autonomy.

For 256-320 px inputs, Khadas offers unmatched raw speed but risks sporadic overruns at 640 px. Radxa responds
more slowly yet remains predictably under 100 ms at the lower resolutions; its longer but consistent latency is better
suited to maintaining stable control loops.
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Figure 6: Latency distribution on the NPU-equipped boards (Radxa Zero 3W and Khadas Edge 2).
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Figure 7: Mean inference latency under synthetic CPU load.
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Figure 8: Mean SoC temperature after 60 s of inference at each input resolution.

C. Implications for LTA flight

Only the NPU-equipped boards satisfy both real-time criteria at 256-320 px inputs. The Raspberry Pi Zero 2 W, while
extremely light (13 g), exceeds the pos latency budget by roughly an order of magnitude, and although off-board Wi-Fi
inference—with the raspberry pi as the edge device—can achieve sub-100 ms under ideal conditions (< 100 ms'?), the

added variability from packet loss and airtime contention undermines its stability.

Latency wise, Khadas Edge 2 achieves the lowest median and often meets the 100 ms pgs bound at 256x256, but it
runs hot without a heatsink: at 27 g it more than doubles the payload mass of the 13 g Radxa Zero 3W and operates
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close to its throttling threshold, which amplifies instability (CV 5-46 %). By contrast, Radxa Zero 3W (13 g) remains
well below its thermal limit (CV 67 %), sustains pgs < 100 ms in all test resolutions, and imposes a minimal mass
penalty (shown in Figure 8). Its combination of low weight, consistent latency, and thermal headroom makes it the
safest and most balanced choice for closed-loop real-time control on buoyancy-limited LTA UAVs.

In summary: a CPU-only solution is untenable despite its light mass, Khadas maximizes throughput at the cost of
both weight and thermal stability, and Radxa delivers the best trade-off of latency, jitter, and payload mass.

Table 3: Inference-latency statistics and end-of-run temperatures across 15 trials. Latencies are in milliseconds.

Board Input Median p50 p95 p99 CV (%) Temp (°C)
256x256 808 815 1340 1510 38 53
Raspberry PiZero2 W 320x320 1050 1070 1680 1830 41 54
640x640 4300 4400 6120 6420 47 56
256x256 61 63 86 95 6 54
Radxa Zero 3W 320x320 77 79 97 105 7 55
640x640 227 230 260 280 7 55
256x256 17 18 32 38 54 74
Khadas Edge 2 320x320 20 21 38 45 61 75
640x640 45 46 150 170 76 75

V. System Design

The results in Section IV show that a lightweight NPU-equipped SBC with a small form factor can deliver sub-100
ms, low-variance inference without exceeding the modest thermal, weight, and power limits of LTA UAVs. This finding
motivates a shift from our legacy architecture,'? in which camera frames were streamed via Wi-Fi to a ground station
for processing, and toward a fully self-contained design centered on the Radxa Zero 3W. By moving all perception
and control inference on board, we eliminate key points of failure, such as dependence on the communication link,
inference instability, and guarantee that the control loop always closes, even during brief telemetry dropouts.

A. On-board perception-control model

The perception control loop can be broken into three discrete processes. First, a camera is utilized over the standard
Camera Serial Interface (CSI) connection. A CSI camera is used due to it’s low Size, Weight, Power and Cost (Swap-C).
A Python program then interfaces with the appropriate driver, and receives a low resolution image. This image is then
pipelined into Radxa’s package for neural processing unit (NPU) acceleration for object detection. Due to this process
taking place onboard, there is no communication latency across the network, preventing any concerns regarding data
dropout or time delay. The NPU sub-module then returns an array of classifications, confidences and bounding boxes
for each object detected within the image frame.

Next, a state machine determines which object type should be targeted next, and filters detections appropriately.
If in frame, the center of the object is computed using the four corners of the bounding box, and using the optical
properties of the camera’s lens, a relative angular error and relative altitude error are computed. Both errors are fed into
PID controllers to control the vehicle’s motors.

Finally, the bounding box, classification, and confidence are drawn on the image itself for human-interpretable
real-time game monitoring. The image is converted into a compressed JPG image, and broken into packets to be
streamed across a UDP socket on the network. In order to avoid any form of latency, the UDP protocol is used to bypass
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any retransmission. Without retransmission, data is continuously streamed at a quick and consistent rate, as real-time
monitoring can be lossy and not impact the system’s performance.

This process is repeated in a loop throughout the duration of a game, with the state machine dynamically selecting
what object type should be targeted. This approach yields a consistent processing time, which is required for real-time
autonomous system control.

Lighter than Air UAV

Radxa Zero 3W
Network Adapter Camera
P I (1TOPS) sl

Base Station

Ethernet

Monitoring Server
(>10 GFLOPS)

Wi-Fi Access Point

Figure 9: Visualization of system with communication link and estimated processing power.

VI. Conclusions and Future Work

This study confirms that a fully self-contained perception—control loop is now practical for lighter-than-air UAV's
with Defend the Republic-competition constraints. Benchmarks in Section IV show that an RK3566-based Radxa Zero
3W sustains median inference latencies of 70-80 ms with a coefficient of variation below 7%, while stabilizing at 55
°C—well beneath its thermal-throttle threshold.? Because real-time control budgets cap round-trip latency at 100 ms'?
as stated in Section II, the board offers ample headroom and cleanly replaces the earlier off-board pipeline. By migrating
vision, sensor fusion, and control entirely on-board, we eliminate the variability inherent to wireless round-trips and
maintain stable flight even during multi-second telemetry drop-outs. These results establish on-board autonomy as
a robust baseline for future Defend the Republic seasons and similarly resource-tight missions. Furthermore, this
approach’s independence from external computation or communication opens the door for its integration into fixed-wing,
high-speed, maneuverable, or hybrid UAVs facing similar constraints, thus broadening its applicability beyond the DTR
competition context.

Future work will involve thoroughly investigating quantization techniques and tailoring model optimizations for
NPUs and SBCs. The promising performance of the NPU-based boards to handle higher loads also gives the green
light to begin testing localization techniques. This will allow us to create advanced trajectories based on knowledge of
objectives and obstacles in the environment. We will also employ advanced dataset augmentation and training strategies
to improve object detection.
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